kernel-luso-comfort commited on
Commit
0a9ad49
·
1 Parent(s): f50a656

Add VSCode settings and update dependencies; refactor model prediction logic to include modality and targets

Browse files
.vscode/settings.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "python.analysis.typeCheckingMode": "standard"
3
+ }
inference_utils/inference.py CHANGED
@@ -15,13 +15,15 @@ import numpy as np
15
  import torch.nn.functional as F
16
  from PIL import Image
17
  from torchvision import transforms
18
- #from utils.visualizer import Visualizer
 
19
  # from detectron2.utils.colormap import random_color
20
  # from detectron2.data import MetadataCatalog
21
  # from detectron2.structures import BitMasks
22
  from modeling.language.loss import vl_similarity
23
  from utilities.constants import BIOMED_CLASSES
24
- #from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES
 
25
 
26
  # import cv2
27
  # import os
@@ -33,62 +35,70 @@ import random
33
  t = []
34
  t.append(transforms.Resize((1024, 1024), interpolation=Image.BICUBIC))
35
  transform = transforms.Compose(t)
36
- #metadata = MetadataCatalog.get('coco_2017_train_panoptic')
37
- all_classes = ['background'] + [name.replace('-other','').replace('-merged','')
38
- for name in BIOMED_CLASSES] + ["others"]
 
 
 
39
  # colors_list = [(np.array(color['color'])/255).tolist() for color in COCO_CATEGORIES] + [[1, 1, 1]]
40
 
41
  # use color list from matplotlib
42
  import matplotlib.colors as mcolors
 
43
  colors = dict(mcolors.TABLEAU_COLORS, **mcolors.BASE_COLORS)
44
- colors_list = [list(colors.values())[i] for i in range(16)]
45
 
46
  from .output_processing import mask_stats, combine_masks
47
-
48
 
49
  @torch.no_grad()
50
- def interactive_infer_image(model, image, prompts):
51
 
52
  image_resize = transform(image)
53
  width = image.size[0]
54
  height = image.size[1]
55
  image_resize = np.asarray(image_resize)
56
- image = torch.from_numpy(image_resize.copy()).permute(2,0,1).cuda()
57
 
58
- data = {"image": image, 'text': prompts, "height": height, "width": width}
59
-
60
- # inistalize task
61
- model.model.task_switch['spatial'] = False
62
- model.model.task_switch['visual'] = False
63
- model.model.task_switch['grounding'] = True
64
- model.model.task_switch['audio'] = False
65
- model.model.task_switch['grounding'] = True
66
 
 
 
 
 
 
 
67
 
68
  batch_inputs = [data]
69
- results,image_size,extra = model.model.evaluate_demo(batch_inputs)
70
 
71
- pred_masks = results['pred_masks'][0]
72
- v_emb = results['pred_captions'][0]
73
- t_emb = extra['grounding_class']
74
 
75
  t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
76
  v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
77
 
78
  temperature = model.model.sem_seg_head.predictor.lang_encoder.logit_scale
79
  out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
80
-
81
  matched_id = out_prob.max(0)[1]
82
- pred_masks_pos = pred_masks[matched_id,:,:]
83
- pred_class = results['pred_logits'][0][matched_id].max(dim=-1)[1]
84
 
85
  # interpolate mask to ori size
86
- pred_mask_prob = F.interpolate(pred_masks_pos[None,], (data['height'], data['width']),
87
- mode='bilinear')[0,:,:data['height'],:data['width']].sigmoid().cpu().numpy()
88
- pred_masks_pos = (1*(pred_mask_prob > 0.5)).astype(np.uint8)
89
-
90
- return pred_mask_prob
 
 
 
 
91
 
 
92
 
93
 
94
  # def interactive_infer_panoptic_biomedseg(model, image, tasks, reftxt=None):
@@ -103,7 +113,7 @@ def interactive_infer_image(model, image, prompts):
103
  # data = {"image": images, "height": height, "width": width}
104
  # if len(tasks) == 0:
105
  # tasks = ["Panoptic"]
106
-
107
  # # inistalize task
108
  # model.model.task_switch['spatial'] = False
109
  # model.model.task_switch['visual'] = False
@@ -114,7 +124,7 @@ def interactive_infer_image(model, image, prompts):
114
  # assert isinstance(reftxt, list), f"reftxt should be a list of strings, but got {type(reftxt)}"
115
  # model.model.task_switch['grounding'] = True
116
  # predicts = {}
117
- # for i, txt in enumerate(reftxt):
118
  # data['text'] = txt
119
  # batch_inputs = [data]
120
 
@@ -129,7 +139,7 @@ def interactive_infer_image(model, image, prompts):
129
 
130
  # temperature = model.model.sem_seg_head.predictor.lang_encoder.logit_scale
131
  # out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
132
-
133
  # matched_id = out_prob.max(0)[1]
134
  # pred_masks_pos = pred_masks[matched_id,:,:]
135
  # pred_class = results['pred_logits'][0][matched_id].max(dim=-1)[1]
@@ -144,18 +154,17 @@ def interactive_infer_image(model, image, prompts):
144
  # pred_mask_prob = F.interpolate(pred_masks_pos[None,], image_size[-2:], mode='bilinear')[0,:,:data['height'],:data['width']].sigmoid().cpu().numpy()
145
  # #pred_masks_pos = 1*(pred_mask_prob > 0.5)
146
  # predicts[txt] = pred_mask_prob[0]
147
-
148
  # masks = combine_masks(predicts)
149
-
150
  # predict_mask_stats = {}
151
  # print(masks.keys())
152
  # for i, txt in enumerate(masks):
153
  # mask = masks[txt]
154
  # demo = visual.draw_binary_mask(mask, color=colors_list[i], text=txt)
155
  # predict_mask_stats[txt] = mask_stats((predicts[txt]*255), image_ori)
156
-
157
  # res = demo.get_image()
158
  # torch.cuda.empty_cache()
159
  # # return Image.fromarray(res), stroke_inimg, stroke_refimg
160
  # return Image.fromarray(res), None, predict_mask_stats
161
-
 
15
  import torch.nn.functional as F
16
  from PIL import Image
17
  from torchvision import transforms
18
+
19
+ # from utils.visualizer import Visualizer
20
  # from detectron2.utils.colormap import random_color
21
  # from detectron2.data import MetadataCatalog
22
  # from detectron2.structures import BitMasks
23
  from modeling.language.loss import vl_similarity
24
  from utilities.constants import BIOMED_CLASSES
25
+
26
+ # from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES
27
 
28
  # import cv2
29
  # import os
 
35
  t = []
36
  t.append(transforms.Resize((1024, 1024), interpolation=Image.BICUBIC))
37
  transform = transforms.Compose(t)
38
+ # metadata = MetadataCatalog.get('coco_2017_train_panoptic')
39
+ all_classes = (
40
+ ["background"]
41
+ + [name.replace("-other", "").replace("-merged", "") for name in BIOMED_CLASSES]
42
+ + ["others"]
43
+ )
44
  # colors_list = [(np.array(color['color'])/255).tolist() for color in COCO_CATEGORIES] + [[1, 1, 1]]
45
 
46
  # use color list from matplotlib
47
  import matplotlib.colors as mcolors
48
+
49
  colors = dict(mcolors.TABLEAU_COLORS, **mcolors.BASE_COLORS)
50
+ colors_list = [list(colors.values())[i] for i in range(16)]
51
 
52
  from .output_processing import mask_stats, combine_masks
53
+
54
 
55
  @torch.no_grad()
56
+ def interactive_infer_image(model, image, prompts) -> np.ndarray:
57
 
58
  image_resize = transform(image)
59
  width = image.size[0]
60
  height = image.size[1]
61
  image_resize = np.asarray(image_resize)
62
+ image = torch.from_numpy(image_resize.copy()).permute(2, 0, 1).cuda()
63
 
64
+ data = {"image": image, "text": prompts, "height": height, "width": width}
 
 
 
 
 
 
 
65
 
66
+ # inistalize task
67
+ model.model.task_switch["spatial"] = False
68
+ model.model.task_switch["visual"] = False
69
+ model.model.task_switch["grounding"] = True
70
+ model.model.task_switch["audio"] = False
71
+ model.model.task_switch["grounding"] = True
72
 
73
  batch_inputs = [data]
74
+ results, image_size, extra = model.model.evaluate_demo(batch_inputs)
75
 
76
+ pred_masks = results["pred_masks"][0]
77
+ v_emb = results["pred_captions"][0]
78
+ t_emb = extra["grounding_class"]
79
 
80
  t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
81
  v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
82
 
83
  temperature = model.model.sem_seg_head.predictor.lang_encoder.logit_scale
84
  out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
85
+
86
  matched_id = out_prob.max(0)[1]
87
+ pred_masks_pos = pred_masks[matched_id, :, :]
88
+ pred_class = results["pred_logits"][0][matched_id].max(dim=-1)[1]
89
 
90
  # interpolate mask to ori size
91
+ pred_mask_prob = (
92
+ F.interpolate(
93
+ pred_masks_pos[None,], (data["height"], data["width"]), mode="bilinear"
94
+ )[0, :, : data["height"], : data["width"]]
95
+ .sigmoid()
96
+ .cpu()
97
+ .numpy()
98
+ )
99
+ pred_masks_pos = (1 * (pred_mask_prob > 0.5)).astype(np.uint8)
100
 
101
+ return pred_mask_prob
102
 
103
 
104
  # def interactive_infer_panoptic_biomedseg(model, image, tasks, reftxt=None):
 
113
  # data = {"image": images, "height": height, "width": width}
114
  # if len(tasks) == 0:
115
  # tasks = ["Panoptic"]
116
+
117
  # # inistalize task
118
  # model.model.task_switch['spatial'] = False
119
  # model.model.task_switch['visual'] = False
 
124
  # assert isinstance(reftxt, list), f"reftxt should be a list of strings, but got {type(reftxt)}"
125
  # model.model.task_switch['grounding'] = True
126
  # predicts = {}
127
+ # for i, txt in enumerate(reftxt):
128
  # data['text'] = txt
129
  # batch_inputs = [data]
130
 
 
139
 
140
  # temperature = model.model.sem_seg_head.predictor.lang_encoder.logit_scale
141
  # out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
142
+
143
  # matched_id = out_prob.max(0)[1]
144
  # pred_masks_pos = pred_masks[matched_id,:,:]
145
  # pred_class = results['pred_logits'][0][matched_id].max(dim=-1)[1]
 
154
  # pred_mask_prob = F.interpolate(pred_masks_pos[None,], image_size[-2:], mode='bilinear')[0,:,:data['height'],:data['width']].sigmoid().cpu().numpy()
155
  # #pred_masks_pos = 1*(pred_mask_prob > 0.5)
156
  # predicts[txt] = pred_mask_prob[0]
157
+
158
  # masks = combine_masks(predicts)
159
+
160
  # predict_mask_stats = {}
161
  # print(masks.keys())
162
  # for i, txt in enumerate(masks):
163
  # mask = masks[txt]
164
  # demo = visual.draw_binary_mask(mask, color=colors_list[i], text=txt)
165
  # predict_mask_stats[txt] = mask_stats((predicts[txt]*255), image_ori)
166
+
167
  # res = demo.get_image()
168
  # torch.cuda.empty_cache()
169
  # # return Image.fromarray(res), stroke_inimg, stroke_refimg
170
  # return Image.fromarray(res), None, predict_mask_stats
 
inference_utils/model.py CHANGED
@@ -10,14 +10,18 @@
10
  # See the License for the specific language governing permissions and
11
  # limitations under the License.
12
 
 
13
  import os
 
 
14
  from PIL import Image
15
  from huggingface_hub import hf_hub_download
16
  import matplotlib.pyplot as plt
17
  import numpy as np
18
  import torch
19
- from inference_utils.inference import interactive_infer_image
20
 
 
 
21
  from modeling import build_model
22
  from modeling.BaseModel import BaseModel
23
  from utilities.arguments import load_opt_from_config_files
@@ -25,15 +29,35 @@ from utilities.constants import BIOMED_CLASSES
25
  from utilities.distributed import init_distributed
26
 
27
 
 
 
 
 
 
 
 
 
 
 
28
  class Model:
29
  def init(self):
30
  self._model = init_model()
31
 
32
- def predict(self, image: Image, modality_type: str, targets: list[str]) -> Image:
33
- return predict(self._model, image, targets)
 
 
 
 
 
 
 
 
 
 
34
 
35
 
36
- def init_model():
37
  # Download model
38
  model_file = hf_hub_download(
39
  repo_id="microsoft/BiomedParse",
@@ -55,33 +79,77 @@ def init_model():
55
  return model
56
 
57
 
58
- def predict(model, image: Image, prompts: list[str]):
59
- if not prompts:
60
- return None
 
 
 
61
 
62
  # Convert to RGB if needed
63
  if image.mode != "RGB":
64
  image = image.convert("RGB")
65
 
66
  # Get predictions
67
- pred_mask = interactive_infer_image(model, image, prompts)
68
 
69
- # Generate visualization
70
- colors = generate_colors(len(prompts))
71
- pred_overlay = overlay_masks(
72
- image, [1 * (pred_mask[i] > 0.5) for i in range(len(prompts))], colors
 
 
 
 
 
 
 
 
 
73
  )
74
 
75
- return pred_overlay
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
 
77
 
78
- def generate_colors(n):
79
  cmap = plt.get_cmap("tab10")
80
- colors = [tuple(int(255 * val) for val in cmap(i)[:3]) for i in range(n)]
 
 
 
81
  return colors
82
 
83
 
84
- def overlay_masks(image, masks, colors):
 
 
 
 
85
  overlay = image.copy()
86
  overlay = np.array(overlay, dtype=np.uint8)
87
  for mask, color in zip(masks, colors):
 
10
  # See the License for the specific language governing permissions and
11
  # limitations under the License.
12
 
13
+ from dataclasses import dataclass
14
  import os
15
+ from typing import Tuple
16
+
17
  from PIL import Image
18
  from huggingface_hub import hf_hub_download
19
  import matplotlib.pyplot as plt
20
  import numpy as np
21
  import torch
 
22
 
23
+ from inference_utils.inference import interactive_infer_image
24
+ from inference_utils.output_processing import check_mask_stats
25
  from modeling import build_model
26
  from modeling.BaseModel import BaseModel
27
  from utilities.arguments import load_opt_from_config_files
 
29
  from utilities.distributed import init_distributed
30
 
31
 
32
+ zero_tensor = torch.zeros(1, 1, 1)
33
+
34
+
35
+ @dataclass
36
+ class PredictionTarget:
37
+ target: str
38
+ pred_mask: torch.Tensor = zero_tensor
39
+ adjusted_p_value: float = -1.0
40
+
41
+
42
  class Model:
43
  def init(self):
44
  self._model = init_model()
45
 
46
+ def predict(
47
+ self, image: Image.Image, modality_type: str, targets: list[str]
48
+ ) -> Tuple[Image.Image, str]:
49
+ image_annotated, prediction_targets_not_found = predict(
50
+ self._model, image, modality_type, targets
51
+ )
52
+ targets_not_found_str = (
53
+ "\n".join(t.target for t in prediction_targets_not_found)
54
+ if prediction_targets_not_found
55
+ else "All targets were found!"
56
+ )
57
+ return image_annotated, targets_not_found_str
58
 
59
 
60
+ def init_model() -> BaseModel:
61
  # Download model
62
  model_file = hf_hub_download(
63
  repo_id="microsoft/BiomedParse",
 
79
  return model
80
 
81
 
82
+ def predict(
83
+ model: BaseModel, image: Image.Image, modality_type: str, targets: list[str]
84
+ ) -> Tuple[Image.Image, list[PredictionTarget]]:
85
+ assert len(targets) > 0, "At least one target is required"
86
+
87
+ prediction_tasks = [PredictionTarget(target=target) for target in targets]
88
 
89
  # Convert to RGB if needed
90
  if image.mode != "RGB":
91
  image = image.convert("RGB")
92
 
93
  # Get predictions
94
+ pred_mask = interactive_infer_image(model, image, targets)
95
 
96
+ for i, pt in enumerate(prediction_tasks):
97
+ pt.pred_mask = pred_mask[i]
98
+
99
+ image_np = np.array(image)
100
+
101
+ for pt in prediction_tasks:
102
+ adj_p_value = check_mask_stats(
103
+ image_np, pt.pred_mask * 255, modality_type, pt.target
104
+ )
105
+ pt.adjusted_p_value = float(adj_p_value)
106
+
107
+ pred_tasks_found, pred_tasks_not_found = segregate_prediction_tasks(
108
+ prediction_tasks, 0.05
109
  )
110
 
111
+ # Generate visualization
112
+ colors = generate_colors(len(pred_tasks_found))
113
+ masks = [1 * (pred_mask[i] > 0.5) for i in range(len(pred_tasks_found))]
114
+ pred_overlay = overlay_masks(image, masks, colors)
115
+
116
+ return pred_overlay, pred_tasks_not_found
117
+
118
+
119
+ def segregate_prediction_tasks(
120
+ prediction_tasks: list[PredictionTarget], p_value_threshold: float
121
+ ) -> tuple[list[PredictionTarget], list[PredictionTarget]]:
122
+ """Segregates Prediction Tasks by p-value
123
+
124
+ Prediction tasks with a p-value higher than p_value_threshold go into the targets_found list.
125
+ Otherwise, they go into the targets_not_found list.
126
+ """
127
+
128
+ targets_found = []
129
+ targets_not_found = []
130
+ for pt in prediction_tasks:
131
+ if pt.adjusted_p_value > p_value_threshold:
132
+ targets_found.append(pt)
133
+ else:
134
+ targets_not_found.append(pt)
135
+
136
+ return targets_found, targets_not_found
137
 
138
 
139
+ def generate_colors(n: int) -> list[Tuple[int, int, int]]:
140
  cmap = plt.get_cmap("tab10")
141
+ colors = [
142
+ (int(255 * cmap(i)[0]), int(255 * cmap(i)[1]), int(255 * cmap(i)[2]))
143
+ for i in range(n)
144
+ ]
145
  return colors
146
 
147
 
148
+ def overlay_masks(
149
+ image: Image.Image,
150
+ masks: list[np.ndarray],
151
+ colors: list[Tuple[int, int, int]],
152
+ ) -> Image.Image:
153
  overlay = image.copy()
154
  overlay = np.array(overlay, dtype=np.uint8)
155
  for mask, color in zip(masks, colors):
inference_utils/model_mock.py CHANGED
@@ -12,9 +12,7 @@
12
 
13
 
14
  from typing import Tuple
15
- from PIL import ImageDraw, ImageFont
16
- from PIL.Image import Image
17
- import gradio as gr
18
  import random
19
 
20
 
@@ -23,8 +21,8 @@ class Model:
23
  pass
24
 
25
  def predict(
26
- self, image: Image, modality_type: str, targets: list[str]
27
- ) -> Tuple[Image, str]:
28
  # Randomly split targets into found and not found
29
  targets_found = random.sample(targets, k=len(targets) // 2)
30
  targets_not_found = [t for t in targets if t not in targets_found]
 
12
 
13
 
14
  from typing import Tuple
15
+ from PIL import ImageDraw, ImageFont, Image
 
 
16
  import random
17
 
18
 
 
21
  pass
22
 
23
  def predict(
24
+ self, image: Image.Image, modality_type: str, targets: list[str]
25
+ ) -> Tuple[Image.Image, str]:
26
  # Randomly split targets into found and not found
27
  targets_found = random.sample(targets, k=len(targets) // 2)
28
  targets_not_found = [t for t in targets if t not in targets_found]
pyproject.toml CHANGED
@@ -7,6 +7,7 @@ requires-python = ">=3.9"
7
  dependencies = [
8
  "gradio==4.44.1",
9
  "pytest>=8.3.4",
 
10
  ]
11
 
12
  [tool.pytest.ini_options]
 
7
  dependencies = [
8
  "gradio==4.44.1",
9
  "pytest>=8.3.4",
10
+ "torch>=2.5.1",
11
  ]
12
 
13
  [tool.pytest.ini_options]
uv.lock CHANGED
@@ -46,12 +46,14 @@ source = { virtual = "." }
46
  dependencies = [
47
  { name = "gradio" },
48
  { name = "pytest" },
 
49
  ]
50
 
51
  [package.metadata]
52
  requires-dist = [
53
  { name = "gradio", specifier = "==4.44.1" },
54
  { name = "pytest", specifier = ">=8.3.4" },
 
55
  ]
56
 
57
  [[package]]
@@ -722,6 +724,24 @@ wheels = [
722
  { url = "https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8", size = 9979 },
723
  ]
724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
725
  [[package]]
726
  name = "numpy"
727
  version = "2.0.2"
@@ -774,6 +794,126 @@ wheels = [
774
  { url = "https://files.pythonhosted.org/packages/cc/dc/d330a6faefd92b446ec0f0dfea4c3207bb1fef3c4771d19cf4543efd2c78/numpy-2.0.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a46288ec55ebbd58947d31d72be2c63cbf839f0a63b49cb755022310792a3385", size = 15828784 },
775
  ]
776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
777
  [[package]]
778
  name = "orjson"
779
  version = "3.10.13"
@@ -1294,6 +1434,15 @@ wheels = [
1294
  { url = "https://files.pythonhosted.org/packages/6a/23/8146aad7d88f4fcb3a6218f41a60f6c2d4e3a72de72da1825dc7c8f7877c/semantic_version-2.10.0-py2.py3-none-any.whl", hash = "sha256:de78a3b8e0feda74cabc54aab2da702113e33ac9d9eb9d2389bcf1f58b7d9177", size = 15552 },
1295
  ]
1296
 
 
 
 
 
 
 
 
 
 
1297
  [[package]]
1298
  name = "shellingham"
1299
  version = "1.5.4"
@@ -1334,6 +1483,18 @@ wheels = [
1334
  { url = "https://files.pythonhosted.org/packages/96/00/2b325970b3060c7cecebab6d295afe763365822b1306a12eeab198f74323/starlette-0.41.3-py3-none-any.whl", hash = "sha256:44cedb2b7c77a9de33a8b74b2b90e9f50d11fcf25d8270ea525ad71a25374ff7", size = 73225 },
1335
  ]
1336
 
 
 
 
 
 
 
 
 
 
 
 
 
1337
  [[package]]
1338
  name = "tomli"
1339
  version = "2.2.1"
@@ -1382,6 +1543,52 @@ wheels = [
1382
  { url = "https://files.pythonhosted.org/packages/68/4f/12207897848a653d03ebbf6775a29d949408ded5f99b2d87198bc5c93508/tomlkit-0.12.0-py3-none-any.whl", hash = "sha256:926f1f37a1587c7a4f6c7484dae538f1345d96d793d9adab5d3675957b1d0766", size = 37334 },
1383
  ]
1384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385
  [[package]]
1386
  name = "tqdm"
1387
  version = "4.67.1"
@@ -1394,6 +1601,20 @@ wheels = [
1394
  { url = "https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl", hash = "sha256:26445eca388f82e72884e0d580d5464cd801a3ea01e63e5601bdff9ba6a48de2", size = 78540 },
1395
  ]
1396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1397
  [[package]]
1398
  name = "typer"
1399
  version = "0.15.1"
 
46
  dependencies = [
47
  { name = "gradio" },
48
  { name = "pytest" },
49
+ { name = "torch" },
50
  ]
51
 
52
  [package.metadata]
53
  requires-dist = [
54
  { name = "gradio", specifier = "==4.44.1" },
55
  { name = "pytest", specifier = ">=8.3.4" },
56
+ { name = "torch", specifier = ">=2.5.1" },
57
  ]
58
 
59
  [[package]]
 
724
  { url = "https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8", size = 9979 },
725
  ]
726
 
727
+ [[package]]
728
+ name = "mpmath"
729
+ version = "1.3.0"
730
+ source = { registry = "https://pypi.org/simple" }
731
+ sdist = { url = "https://files.pythonhosted.org/packages/e0/47/dd32fa426cc72114383ac549964eecb20ecfd886d1e5ccf5340b55b02f57/mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f", size = 508106 }
732
+ wheels = [
733
+ { url = "https://files.pythonhosted.org/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c", size = 536198 },
734
+ ]
735
+
736
+ [[package]]
737
+ name = "networkx"
738
+ version = "3.2.1"
739
+ source = { registry = "https://pypi.org/simple" }
740
+ sdist = { url = "https://files.pythonhosted.org/packages/c4/80/a84676339aaae2f1cfdf9f418701dd634aef9cc76f708ef55c36ff39c3ca/networkx-3.2.1.tar.gz", hash = "sha256:9f1bb5cf3409bf324e0a722c20bdb4c20ee39bf1c30ce8ae499c8502b0b5e0c6", size = 2073928 }
741
+ wheels = [
742
+ { url = "https://files.pythonhosted.org/packages/d5/f0/8fbc882ca80cf077f1b246c0e3c3465f7f415439bdea6b899f6b19f61f70/networkx-3.2.1-py3-none-any.whl", hash = "sha256:f18c69adc97877c42332c170849c96cefa91881c99a7cb3e95b7c659ebdc1ec2", size = 1647772 },
743
+ ]
744
+
745
  [[package]]
746
  name = "numpy"
747
  version = "2.0.2"
 
794
  { url = "https://files.pythonhosted.org/packages/cc/dc/d330a6faefd92b446ec0f0dfea4c3207bb1fef3c4771d19cf4543efd2c78/numpy-2.0.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a46288ec55ebbd58947d31d72be2c63cbf839f0a63b49cb755022310792a3385", size = 15828784 },
795
  ]
796
 
797
+ [[package]]
798
+ name = "nvidia-cublas-cu12"
799
+ version = "12.4.5.8"
800
+ source = { registry = "https://pypi.org/simple" }
801
+ wheels = [
802
+ { url = "https://files.pythonhosted.org/packages/7f/7f/7fbae15a3982dc9595e49ce0f19332423b260045d0a6afe93cdbe2f1f624/nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_aarch64.whl", hash = "sha256:0f8aa1706812e00b9f19dfe0cdb3999b092ccb8ca168c0db5b8ea712456fd9b3", size = 363333771 },
803
+ { url = "https://files.pythonhosted.org/packages/ae/71/1c91302526c45ab494c23f61c7a84aa568b8c1f9d196efa5993957faf906/nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl", hash = "sha256:2fc8da60df463fdefa81e323eef2e36489e1c94335b5358bcb38360adf75ac9b", size = 363438805 },
804
+ ]
805
+
806
+ [[package]]
807
+ name = "nvidia-cuda-cupti-cu12"
808
+ version = "12.4.127"
809
+ source = { registry = "https://pypi.org/simple" }
810
+ wheels = [
811
+ { url = "https://files.pythonhosted.org/packages/93/b5/9fb3d00386d3361b03874246190dfec7b206fd74e6e287b26a8fcb359d95/nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:79279b35cf6f91da114182a5ce1864997fd52294a87a16179ce275773799458a", size = 12354556 },
812
+ { url = "https://files.pythonhosted.org/packages/67/42/f4f60238e8194a3106d06a058d494b18e006c10bb2b915655bd9f6ea4cb1/nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:9dec60f5ac126f7bb551c055072b69d85392b13311fcc1bcda2202d172df30fb", size = 13813957 },
813
+ ]
814
+
815
+ [[package]]
816
+ name = "nvidia-cuda-nvrtc-cu12"
817
+ version = "12.4.127"
818
+ source = { registry = "https://pypi.org/simple" }
819
+ wheels = [
820
+ { url = "https://files.pythonhosted.org/packages/77/aa/083b01c427e963ad0b314040565ea396f914349914c298556484f799e61b/nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:0eedf14185e04b76aa05b1fea04133e59f465b6f960c0cbf4e37c3cb6b0ea198", size = 24133372 },
821
+ { url = "https://files.pythonhosted.org/packages/2c/14/91ae57cd4db3f9ef7aa99f4019cfa8d54cb4caa7e00975df6467e9725a9f/nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:a178759ebb095827bd30ef56598ec182b85547f1508941a3d560eb7ea1fbf338", size = 24640306 },
822
+ ]
823
+
824
+ [[package]]
825
+ name = "nvidia-cuda-runtime-cu12"
826
+ version = "12.4.127"
827
+ source = { registry = "https://pypi.org/simple" }
828
+ wheels = [
829
+ { url = "https://files.pythonhosted.org/packages/a1/aa/b656d755f474e2084971e9a297def515938d56b466ab39624012070cb773/nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:961fe0e2e716a2a1d967aab7caee97512f71767f852f67432d572e36cb3a11f3", size = 894177 },
830
+ { url = "https://files.pythonhosted.org/packages/ea/27/1795d86fe88ef397885f2e580ac37628ed058a92ed2c39dc8eac3adf0619/nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:64403288fa2136ee8e467cdc9c9427e0434110899d07c779f25b5c068934faa5", size = 883737 },
831
+ ]
832
+
833
+ [[package]]
834
+ name = "nvidia-cudnn-cu12"
835
+ version = "9.1.0.70"
836
+ source = { registry = "https://pypi.org/simple" }
837
+ dependencies = [
838
+ { name = "nvidia-cublas-cu12" },
839
+ ]
840
+ wheels = [
841
+ { url = "https://files.pythonhosted.org/packages/9f/fd/713452cd72343f682b1c7b9321e23829f00b842ceaedcda96e742ea0b0b3/nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl", hash = "sha256:165764f44ef8c61fcdfdfdbe769d687e06374059fbb388b6c89ecb0e28793a6f", size = 664752741 },
842
+ ]
843
+
844
+ [[package]]
845
+ name = "nvidia-cufft-cu12"
846
+ version = "11.2.1.3"
847
+ source = { registry = "https://pypi.org/simple" }
848
+ dependencies = [
849
+ { name = "nvidia-nvjitlink-cu12" },
850
+ ]
851
+ wheels = [
852
+ { url = "https://files.pythonhosted.org/packages/7a/8a/0e728f749baca3fbeffad762738276e5df60851958be7783af121a7221e7/nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5dad8008fc7f92f5ddfa2101430917ce2ffacd86824914c82e28990ad7f00399", size = 211422548 },
853
+ { url = "https://files.pythonhosted.org/packages/27/94/3266821f65b92b3138631e9c8e7fe1fb513804ac934485a8d05776e1dd43/nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl", hash = "sha256:f083fc24912aa410be21fa16d157fed2055dab1cc4b6934a0e03cba69eb242b9", size = 211459117 },
854
+ ]
855
+
856
+ [[package]]
857
+ name = "nvidia-curand-cu12"
858
+ version = "10.3.5.147"
859
+ source = { registry = "https://pypi.org/simple" }
860
+ wheels = [
861
+ { url = "https://files.pythonhosted.org/packages/80/9c/a79180e4d70995fdf030c6946991d0171555c6edf95c265c6b2bf7011112/nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_aarch64.whl", hash = "sha256:1f173f09e3e3c76ab084aba0de819c49e56614feae5c12f69883f4ae9bb5fad9", size = 56314811 },
862
+ { url = "https://files.pythonhosted.org/packages/8a/6d/44ad094874c6f1b9c654f8ed939590bdc408349f137f9b98a3a23ccec411/nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl", hash = "sha256:a88f583d4e0bb643c49743469964103aa59f7f708d862c3ddb0fc07f851e3b8b", size = 56305206 },
863
+ ]
864
+
865
+ [[package]]
866
+ name = "nvidia-cusolver-cu12"
867
+ version = "11.6.1.9"
868
+ source = { registry = "https://pypi.org/simple" }
869
+ dependencies = [
870
+ { name = "nvidia-cublas-cu12" },
871
+ { name = "nvidia-cusparse-cu12" },
872
+ { name = "nvidia-nvjitlink-cu12" },
873
+ ]
874
+ wheels = [
875
+ { url = "https://files.pythonhosted.org/packages/46/6b/a5c33cf16af09166845345275c34ad2190944bcc6026797a39f8e0a282e0/nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_aarch64.whl", hash = "sha256:d338f155f174f90724bbde3758b7ac375a70ce8e706d70b018dd3375545fc84e", size = 127634111 },
876
+ { url = "https://files.pythonhosted.org/packages/3a/e1/5b9089a4b2a4790dfdea8b3a006052cfecff58139d5a4e34cb1a51df8d6f/nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl", hash = "sha256:19e33fa442bcfd085b3086c4ebf7e8debc07cfe01e11513cc6d332fd918ac260", size = 127936057 },
877
+ ]
878
+
879
+ [[package]]
880
+ name = "nvidia-cusparse-cu12"
881
+ version = "12.3.1.170"
882
+ source = { registry = "https://pypi.org/simple" }
883
+ dependencies = [
884
+ { name = "nvidia-nvjitlink-cu12" },
885
+ ]
886
+ wheels = [
887
+ { url = "https://files.pythonhosted.org/packages/96/a9/c0d2f83a53d40a4a41be14cea6a0bf9e668ffcf8b004bd65633f433050c0/nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_aarch64.whl", hash = "sha256:9d32f62896231ebe0480efd8a7f702e143c98cfaa0e8a76df3386c1ba2b54df3", size = 207381987 },
888
+ { url = "https://files.pythonhosted.org/packages/db/f7/97a9ea26ed4bbbfc2d470994b8b4f338ef663be97b8f677519ac195e113d/nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl", hash = "sha256:ea4f11a2904e2a8dc4b1833cc1b5181cde564edd0d5cd33e3c168eff2d1863f1", size = 207454763 },
889
+ ]
890
+
891
+ [[package]]
892
+ name = "nvidia-nccl-cu12"
893
+ version = "2.21.5"
894
+ source = { registry = "https://pypi.org/simple" }
895
+ wheels = [
896
+ { url = "https://files.pythonhosted.org/packages/df/99/12cd266d6233f47d00daf3a72739872bdc10267d0383508b0b9c84a18bb6/nvidia_nccl_cu12-2.21.5-py3-none-manylinux2014_x86_64.whl", hash = "sha256:8579076d30a8c24988834445f8d633c697d42397e92ffc3f63fa26766d25e0a0", size = 188654414 },
897
+ ]
898
+
899
+ [[package]]
900
+ name = "nvidia-nvjitlink-cu12"
901
+ version = "12.4.127"
902
+ source = { registry = "https://pypi.org/simple" }
903
+ wheels = [
904
+ { url = "https://files.pythonhosted.org/packages/02/45/239d52c05074898a80a900f49b1615d81c07fceadd5ad6c4f86a987c0bc4/nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:4abe7fef64914ccfa909bc2ba39739670ecc9e820c83ccc7a6ed414122599b83", size = 20552510 },
905
+ { url = "https://files.pythonhosted.org/packages/ff/ff/847841bacfbefc97a00036e0fce5a0f086b640756dc38caea5e1bb002655/nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:06b3b9b25bf3f8af351d664978ca26a16d2c5127dbd53c0497e28d1fb9611d57", size = 21066810 },
906
+ ]
907
+
908
+ [[package]]
909
+ name = "nvidia-nvtx-cu12"
910
+ version = "12.4.127"
911
+ source = { registry = "https://pypi.org/simple" }
912
+ wheels = [
913
+ { url = "https://files.pythonhosted.org/packages/06/39/471f581edbb7804b39e8063d92fc8305bdc7a80ae5c07dbe6ea5c50d14a5/nvidia_nvtx_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:7959ad635db13edf4fc65c06a6e9f9e55fc2f92596db928d169c0bb031e88ef3", size = 100417 },
914
+ { url = "https://files.pythonhosted.org/packages/87/20/199b8713428322a2f22b722c62b8cc278cc53dffa9705d744484b5035ee9/nvidia_nvtx_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:781e950d9b9f60d8241ccea575b32f5105a5baf4c2351cab5256a24869f12a1a", size = 99144 },
915
+ ]
916
+
917
  [[package]]
918
  name = "orjson"
919
  version = "3.10.13"
 
1434
  { url = "https://files.pythonhosted.org/packages/6a/23/8146aad7d88f4fcb3a6218f41a60f6c2d4e3a72de72da1825dc7c8f7877c/semantic_version-2.10.0-py2.py3-none-any.whl", hash = "sha256:de78a3b8e0feda74cabc54aab2da702113e33ac9d9eb9d2389bcf1f58b7d9177", size = 15552 },
1435
  ]
1436
 
1437
+ [[package]]
1438
+ name = "setuptools"
1439
+ version = "75.6.0"
1440
+ source = { registry = "https://pypi.org/simple" }
1441
+ sdist = { url = "https://files.pythonhosted.org/packages/43/54/292f26c208734e9a7f067aea4a7e282c080750c4546559b58e2e45413ca0/setuptools-75.6.0.tar.gz", hash = "sha256:8199222558df7c86216af4f84c30e9b34a61d8ba19366cc914424cdbd28252f6", size = 1337429 }
1442
+ wheels = [
1443
+ { url = "https://files.pythonhosted.org/packages/55/21/47d163f615df1d30c094f6c8bbb353619274edccf0327b185cc2493c2c33/setuptools-75.6.0-py3-none-any.whl", hash = "sha256:ce74b49e8f7110f9bf04883b730f4765b774ef3ef28f722cce7c273d253aaf7d", size = 1224032 },
1444
+ ]
1445
+
1446
  [[package]]
1447
  name = "shellingham"
1448
  version = "1.5.4"
 
1483
  { url = "https://files.pythonhosted.org/packages/96/00/2b325970b3060c7cecebab6d295afe763365822b1306a12eeab198f74323/starlette-0.41.3-py3-none-any.whl", hash = "sha256:44cedb2b7c77a9de33a8b74b2b90e9f50d11fcf25d8270ea525ad71a25374ff7", size = 73225 },
1484
  ]
1485
 
1486
+ [[package]]
1487
+ name = "sympy"
1488
+ version = "1.13.1"
1489
+ source = { registry = "https://pypi.org/simple" }
1490
+ dependencies = [
1491
+ { name = "mpmath" },
1492
+ ]
1493
+ sdist = { url = "https://files.pythonhosted.org/packages/ca/99/5a5b6f19ff9f083671ddf7b9632028436167cd3d33e11015754e41b249a4/sympy-1.13.1.tar.gz", hash = "sha256:9cebf7e04ff162015ce31c9c6c9144daa34a93bd082f54fd8f12deca4f47515f", size = 7533040 }
1494
+ wheels = [
1495
+ { url = "https://files.pythonhosted.org/packages/b2/fe/81695a1aa331a842b582453b605175f419fe8540355886031328089d840a/sympy-1.13.1-py3-none-any.whl", hash = "sha256:db36cdc64bf61b9b24578b6f7bab1ecdd2452cf008f34faa33776680c26d66f8", size = 6189177 },
1496
+ ]
1497
+
1498
  [[package]]
1499
  name = "tomli"
1500
  version = "2.2.1"
 
1543
  { url = "https://files.pythonhosted.org/packages/68/4f/12207897848a653d03ebbf6775a29d949408ded5f99b2d87198bc5c93508/tomlkit-0.12.0-py3-none-any.whl", hash = "sha256:926f1f37a1587c7a4f6c7484dae538f1345d96d793d9adab5d3675957b1d0766", size = 37334 },
1544
  ]
1545
 
1546
+ [[package]]
1547
+ name = "torch"
1548
+ version = "2.5.1"
1549
+ source = { registry = "https://pypi.org/simple" }
1550
+ dependencies = [
1551
+ { name = "filelock" },
1552
+ { name = "fsspec" },
1553
+ { name = "jinja2" },
1554
+ { name = "networkx" },
1555
+ { name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
1556
+ { name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
1557
+ { name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
1558
+ { name = "nvidia-cuda-runtime-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
1559
+ { name = "nvidia-cudnn-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
1560
+ { name = "nvidia-cufft-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
1561
+ { name = "nvidia-curand-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
1562
+ { name = "nvidia-cusolver-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
1563
+ { name = "nvidia-cusparse-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
1564
+ { name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
1565
+ { name = "nvidia-nvjitlink-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
1566
+ { name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
1567
+ { name = "setuptools", marker = "python_full_version >= '3.12'" },
1568
+ { name = "sympy" },
1569
+ { name = "triton", marker = "python_full_version < '3.13' and platform_machine == 'x86_64' and platform_system == 'Linux'" },
1570
+ { name = "typing-extensions" },
1571
+ ]
1572
+ wheels = [
1573
+ { url = "https://files.pythonhosted.org/packages/2a/ef/834af4a885b31a0b32fff2d80e1e40f771e1566ea8ded55347502440786a/torch-2.5.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:71328e1bbe39d213b8721678f9dcac30dfc452a46d586f1d514a6aa0a99d4744", size = 906446312 },
1574
+ { url = "https://files.pythonhosted.org/packages/69/f0/46e74e0d145f43fa506cb336eaefb2d240547e4ce1f496e442711093ab25/torch-2.5.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:34bfa1a852e5714cbfa17f27c49d8ce35e1b7af5608c4bc6e81392c352dbc601", size = 91919522 },
1575
+ { url = "https://files.pythonhosted.org/packages/a5/13/1eb674c8efbd04d71e4a157ceba991904f633e009a584dd65dccbafbb648/torch-2.5.1-cp310-cp310-win_amd64.whl", hash = "sha256:32a037bd98a241df6c93e4c789b683335da76a2ac142c0973675b715102dc5fa", size = 203088048 },
1576
+ { url = "https://files.pythonhosted.org/packages/a9/9d/e0860474ee0ff8f6ef2c50ec8f71a250f38d78a9b9df9fd241ad3397a65b/torch-2.5.1-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:23d062bf70776a3d04dbe74db950db2a5245e1ba4f27208a87f0d743b0d06e86", size = 63877046 },
1577
+ { url = "https://files.pythonhosted.org/packages/d1/35/e8b2daf02ce933e4518e6f5682c72fd0ed66c15910ea1fb4168f442b71c4/torch-2.5.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:de5b7d6740c4b636ef4db92be922f0edc425b65ed78c5076c43c42d362a45457", size = 906474467 },
1578
+ { url = "https://files.pythonhosted.org/packages/40/04/bd91593a4ca178ece93ca55f27e2783aa524aaccbfda66831d59a054c31e/torch-2.5.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:340ce0432cad0d37f5a31be666896e16788f1adf8ad7be481196b503dad675b9", size = 91919450 },
1579
+ { url = "https://files.pythonhosted.org/packages/0d/4a/e51420d46cfc90562e85af2fee912237c662ab31140ab179e49bd69401d6/torch-2.5.1-cp311-cp311-win_amd64.whl", hash = "sha256:603c52d2fe06433c18b747d25f5c333f9c1d58615620578c326d66f258686f9a", size = 203098237 },
1580
+ { url = "https://files.pythonhosted.org/packages/d0/db/5d9cbfbc7968d79c5c09a0bc0bc3735da079f2fd07cc10498a62b320a480/torch-2.5.1-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:31f8c39660962f9ae4eeec995e3049b5492eb7360dd4f07377658ef4d728fa4c", size = 63884466 },
1581
+ { url = "https://files.pythonhosted.org/packages/8b/5c/36c114d120bfe10f9323ed35061bc5878cc74f3f594003854b0ea298942f/torch-2.5.1-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:ed231a4b3a5952177fafb661213d690a72caaad97d5824dd4fc17ab9e15cec03", size = 906389343 },
1582
+ { url = "https://files.pythonhosted.org/packages/6d/69/d8ada8b6e0a4257556d5b4ddeb4345ea8eeaaef3c98b60d1cca197c7ad8e/torch-2.5.1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:3f4b7f10a247e0dcd7ea97dc2d3bfbfc90302ed36d7f3952b0008d0df264e697", size = 91811673 },
1583
+ { url = "https://files.pythonhosted.org/packages/5f/ba/607d013b55b9fd805db2a5c2662ec7551f1910b4eef39653eeaba182c5b2/torch-2.5.1-cp312-cp312-win_amd64.whl", hash = "sha256:73e58e78f7d220917c5dbfad1a40e09df9929d3b95d25e57d9f8558f84c9a11c", size = 203046841 },
1584
+ { url = "https://files.pythonhosted.org/packages/57/6c/bf52ff061da33deb9f94f4121fde7ff3058812cb7d2036c97bc167793bd1/torch-2.5.1-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:8c712df61101964eb11910a846514011f0b6f5920c55dbf567bff8a34163d5b1", size = 63858109 },
1585
+ { url = "https://files.pythonhosted.org/packages/69/72/20cb30f3b39a9face296491a86adb6ff8f1a47a897e4d14667e6cf89d5c3/torch-2.5.1-cp313-cp313-manylinux1_x86_64.whl", hash = "sha256:9b61edf3b4f6e3b0e0adda8b3960266b9009d02b37555971f4d1c8f7a05afed7", size = 906393265 },
1586
+ { url = "https://files.pythonhosted.org/packages/a9/18/81c399e8f4f1580d34bf99d827cb5fb5cf7a18a266bb5d30ca3ec2e89ba6/torch-2.5.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:1f3b7fb3cf7ab97fae52161423f81be8c6b8afac8d9760823fd623994581e1a3", size = 906479005 },
1587
+ { url = "https://files.pythonhosted.org/packages/5d/86/1c4b168d52cddb8d17952a7b5b25f69ef0da1fc34de1223d73d0d9db1801/torch-2.5.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:7974e3dce28b5a21fb554b73e1bc9072c25dde873fa00d54280861e7a009d7dc", size = 91846074 },
1588
+ { url = "https://files.pythonhosted.org/packages/76/49/4a0a8b19ce8f9bf32fcab4e863c7e2366f519f9826c84ca250567b11a014/torch-2.5.1-cp39-cp39-win_amd64.whl", hash = "sha256:46c817d3ea33696ad3b9df5e774dba2257e9a4cd3c4a3afbf92f6bb13ac5ce2d", size = 203000888 },
1589
+ { url = "https://files.pythonhosted.org/packages/25/07/3548a7cfcf69d0eccec2ee79ee3913f1cdaadb27b36946774db86729ee47/torch-2.5.1-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:8046768b7f6d35b85d101b4b38cba8aa2f3cd51952bc4c06a49580f2ce682291", size = 63876023 },
1590
+ ]
1591
+
1592
  [[package]]
1593
  name = "tqdm"
1594
  version = "4.67.1"
 
1601
  { url = "https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl", hash = "sha256:26445eca388f82e72884e0d580d5464cd801a3ea01e63e5601bdff9ba6a48de2", size = 78540 },
1602
  ]
1603
 
1604
+ [[package]]
1605
+ name = "triton"
1606
+ version = "3.1.0"
1607
+ source = { registry = "https://pypi.org/simple" }
1608
+ dependencies = [
1609
+ { name = "filelock" },
1610
+ ]
1611
+ wheels = [
1612
+ { url = "https://files.pythonhosted.org/packages/98/29/69aa56dc0b2eb2602b553881e34243475ea2afd9699be042316842788ff5/triton-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b0dd10a925263abbe9fa37dcde67a5e9b2383fc269fdf59f5657cac38c5d1d8", size = 209460013 },
1613
+ { url = "https://files.pythonhosted.org/packages/86/17/d9a5cf4fcf46291856d1e90762e36cbabd2a56c7265da0d1d9508c8e3943/triton-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0f34f6e7885d1bf0eaaf7ba875a5f0ce6f3c13ba98f9503651c1e6dc6757ed5c", size = 209506424 },
1614
+ { url = "https://files.pythonhosted.org/packages/78/eb/65f5ba83c2a123f6498a3097746607e5b2f16add29e36765305e4ac7fdd8/triton-3.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c8182f42fd8080a7d39d666814fa36c5e30cc00ea7eeeb1a2983dbb4c99a0fdc", size = 209551444 },
1615
+ { url = "https://files.pythonhosted.org/packages/c4/69/57e0fed438d547524e08bfedc587078314176ad1c15c8be904d3f03149ec/triton-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aafa9a20cd0d9fee523cd4504aa7131807a864cd77dcf6efe7e981f18b8c6c11", size = 209460480 },
1616
+ ]
1617
+
1618
  [[package]]
1619
  name = "typer"
1620
  version = "0.15.1"