Spaces:
Sleeping
Sleeping
kernel-luso-comfort
commited on
Commit
·
0a9ad49
1
Parent(s):
f50a656
Add VSCode settings and update dependencies; refactor model prediction logic to include modality and targets
Browse files- .vscode/settings.json +3 -0
- inference_utils/inference.py +45 -36
- inference_utils/model.py +84 -16
- inference_utils/model_mock.py +3 -5
- pyproject.toml +1 -0
- uv.lock +221 -0
.vscode/settings.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"python.analysis.typeCheckingMode": "standard"
|
3 |
+
}
|
inference_utils/inference.py
CHANGED
@@ -15,13 +15,15 @@ import numpy as np
|
|
15 |
import torch.nn.functional as F
|
16 |
from PIL import Image
|
17 |
from torchvision import transforms
|
18 |
-
|
|
|
19 |
# from detectron2.utils.colormap import random_color
|
20 |
# from detectron2.data import MetadataCatalog
|
21 |
# from detectron2.structures import BitMasks
|
22 |
from modeling.language.loss import vl_similarity
|
23 |
from utilities.constants import BIOMED_CLASSES
|
24 |
-
|
|
|
25 |
|
26 |
# import cv2
|
27 |
# import os
|
@@ -33,62 +35,70 @@ import random
|
|
33 |
t = []
|
34 |
t.append(transforms.Resize((1024, 1024), interpolation=Image.BICUBIC))
|
35 |
transform = transforms.Compose(t)
|
36 |
-
#metadata = MetadataCatalog.get('coco_2017_train_panoptic')
|
37 |
-
all_classes =
|
38 |
-
|
|
|
|
|
|
|
39 |
# colors_list = [(np.array(color['color'])/255).tolist() for color in COCO_CATEGORIES] + [[1, 1, 1]]
|
40 |
|
41 |
# use color list from matplotlib
|
42 |
import matplotlib.colors as mcolors
|
|
|
43 |
colors = dict(mcolors.TABLEAU_COLORS, **mcolors.BASE_COLORS)
|
44 |
-
colors_list = [list(colors.values())[i] for i in range(16)]
|
45 |
|
46 |
from .output_processing import mask_stats, combine_masks
|
47 |
-
|
48 |
|
49 |
@torch.no_grad()
|
50 |
-
def interactive_infer_image(model, image, prompts):
|
51 |
|
52 |
image_resize = transform(image)
|
53 |
width = image.size[0]
|
54 |
height = image.size[1]
|
55 |
image_resize = np.asarray(image_resize)
|
56 |
-
image = torch.from_numpy(image_resize.copy()).permute(2,0,1).cuda()
|
57 |
|
58 |
-
data = {"image": image,
|
59 |
-
|
60 |
-
# inistalize task
|
61 |
-
model.model.task_switch['spatial'] = False
|
62 |
-
model.model.task_switch['visual'] = False
|
63 |
-
model.model.task_switch['grounding'] = True
|
64 |
-
model.model.task_switch['audio'] = False
|
65 |
-
model.model.task_switch['grounding'] = True
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
batch_inputs = [data]
|
69 |
-
results,image_size,extra = model.model.evaluate_demo(batch_inputs)
|
70 |
|
71 |
-
pred_masks = results[
|
72 |
-
v_emb = results[
|
73 |
-
t_emb = extra[
|
74 |
|
75 |
t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
|
76 |
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
|
77 |
|
78 |
temperature = model.model.sem_seg_head.predictor.lang_encoder.logit_scale
|
79 |
out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
|
80 |
-
|
81 |
matched_id = out_prob.max(0)[1]
|
82 |
-
pred_masks_pos = pred_masks[matched_id
|
83 |
-
pred_class = results[
|
84 |
|
85 |
# interpolate mask to ori size
|
86 |
-
pred_mask_prob =
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
91 |
|
|
|
92 |
|
93 |
|
94 |
# def interactive_infer_panoptic_biomedseg(model, image, tasks, reftxt=None):
|
@@ -103,7 +113,7 @@ def interactive_infer_image(model, image, prompts):
|
|
103 |
# data = {"image": images, "height": height, "width": width}
|
104 |
# if len(tasks) == 0:
|
105 |
# tasks = ["Panoptic"]
|
106 |
-
|
107 |
# # inistalize task
|
108 |
# model.model.task_switch['spatial'] = False
|
109 |
# model.model.task_switch['visual'] = False
|
@@ -114,7 +124,7 @@ def interactive_infer_image(model, image, prompts):
|
|
114 |
# assert isinstance(reftxt, list), f"reftxt should be a list of strings, but got {type(reftxt)}"
|
115 |
# model.model.task_switch['grounding'] = True
|
116 |
# predicts = {}
|
117 |
-
# for i, txt in enumerate(reftxt):
|
118 |
# data['text'] = txt
|
119 |
# batch_inputs = [data]
|
120 |
|
@@ -129,7 +139,7 @@ def interactive_infer_image(model, image, prompts):
|
|
129 |
|
130 |
# temperature = model.model.sem_seg_head.predictor.lang_encoder.logit_scale
|
131 |
# out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
|
132 |
-
|
133 |
# matched_id = out_prob.max(0)[1]
|
134 |
# pred_masks_pos = pred_masks[matched_id,:,:]
|
135 |
# pred_class = results['pred_logits'][0][matched_id].max(dim=-1)[1]
|
@@ -144,18 +154,17 @@ def interactive_infer_image(model, image, prompts):
|
|
144 |
# pred_mask_prob = F.interpolate(pred_masks_pos[None,], image_size[-2:], mode='bilinear')[0,:,:data['height'],:data['width']].sigmoid().cpu().numpy()
|
145 |
# #pred_masks_pos = 1*(pred_mask_prob > 0.5)
|
146 |
# predicts[txt] = pred_mask_prob[0]
|
147 |
-
|
148 |
# masks = combine_masks(predicts)
|
149 |
-
|
150 |
# predict_mask_stats = {}
|
151 |
# print(masks.keys())
|
152 |
# for i, txt in enumerate(masks):
|
153 |
# mask = masks[txt]
|
154 |
# demo = visual.draw_binary_mask(mask, color=colors_list[i], text=txt)
|
155 |
# predict_mask_stats[txt] = mask_stats((predicts[txt]*255), image_ori)
|
156 |
-
|
157 |
# res = demo.get_image()
|
158 |
# torch.cuda.empty_cache()
|
159 |
# # return Image.fromarray(res), stroke_inimg, stroke_refimg
|
160 |
# return Image.fromarray(res), None, predict_mask_stats
|
161 |
-
|
|
|
15 |
import torch.nn.functional as F
|
16 |
from PIL import Image
|
17 |
from torchvision import transforms
|
18 |
+
|
19 |
+
# from utils.visualizer import Visualizer
|
20 |
# from detectron2.utils.colormap import random_color
|
21 |
# from detectron2.data import MetadataCatalog
|
22 |
# from detectron2.structures import BitMasks
|
23 |
from modeling.language.loss import vl_similarity
|
24 |
from utilities.constants import BIOMED_CLASSES
|
25 |
+
|
26 |
+
# from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES
|
27 |
|
28 |
# import cv2
|
29 |
# import os
|
|
|
35 |
t = []
|
36 |
t.append(transforms.Resize((1024, 1024), interpolation=Image.BICUBIC))
|
37 |
transform = transforms.Compose(t)
|
38 |
+
# metadata = MetadataCatalog.get('coco_2017_train_panoptic')
|
39 |
+
all_classes = (
|
40 |
+
["background"]
|
41 |
+
+ [name.replace("-other", "").replace("-merged", "") for name in BIOMED_CLASSES]
|
42 |
+
+ ["others"]
|
43 |
+
)
|
44 |
# colors_list = [(np.array(color['color'])/255).tolist() for color in COCO_CATEGORIES] + [[1, 1, 1]]
|
45 |
|
46 |
# use color list from matplotlib
|
47 |
import matplotlib.colors as mcolors
|
48 |
+
|
49 |
colors = dict(mcolors.TABLEAU_COLORS, **mcolors.BASE_COLORS)
|
50 |
+
colors_list = [list(colors.values())[i] for i in range(16)]
|
51 |
|
52 |
from .output_processing import mask_stats, combine_masks
|
53 |
+
|
54 |
|
55 |
@torch.no_grad()
|
56 |
+
def interactive_infer_image(model, image, prompts) -> np.ndarray:
|
57 |
|
58 |
image_resize = transform(image)
|
59 |
width = image.size[0]
|
60 |
height = image.size[1]
|
61 |
image_resize = np.asarray(image_resize)
|
62 |
+
image = torch.from_numpy(image_resize.copy()).permute(2, 0, 1).cuda()
|
63 |
|
64 |
+
data = {"image": image, "text": prompts, "height": height, "width": width}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
# inistalize task
|
67 |
+
model.model.task_switch["spatial"] = False
|
68 |
+
model.model.task_switch["visual"] = False
|
69 |
+
model.model.task_switch["grounding"] = True
|
70 |
+
model.model.task_switch["audio"] = False
|
71 |
+
model.model.task_switch["grounding"] = True
|
72 |
|
73 |
batch_inputs = [data]
|
74 |
+
results, image_size, extra = model.model.evaluate_demo(batch_inputs)
|
75 |
|
76 |
+
pred_masks = results["pred_masks"][0]
|
77 |
+
v_emb = results["pred_captions"][0]
|
78 |
+
t_emb = extra["grounding_class"]
|
79 |
|
80 |
t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
|
81 |
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
|
82 |
|
83 |
temperature = model.model.sem_seg_head.predictor.lang_encoder.logit_scale
|
84 |
out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
|
85 |
+
|
86 |
matched_id = out_prob.max(0)[1]
|
87 |
+
pred_masks_pos = pred_masks[matched_id, :, :]
|
88 |
+
pred_class = results["pred_logits"][0][matched_id].max(dim=-1)[1]
|
89 |
|
90 |
# interpolate mask to ori size
|
91 |
+
pred_mask_prob = (
|
92 |
+
F.interpolate(
|
93 |
+
pred_masks_pos[None,], (data["height"], data["width"]), mode="bilinear"
|
94 |
+
)[0, :, : data["height"], : data["width"]]
|
95 |
+
.sigmoid()
|
96 |
+
.cpu()
|
97 |
+
.numpy()
|
98 |
+
)
|
99 |
+
pred_masks_pos = (1 * (pred_mask_prob > 0.5)).astype(np.uint8)
|
100 |
|
101 |
+
return pred_mask_prob
|
102 |
|
103 |
|
104 |
# def interactive_infer_panoptic_biomedseg(model, image, tasks, reftxt=None):
|
|
|
113 |
# data = {"image": images, "height": height, "width": width}
|
114 |
# if len(tasks) == 0:
|
115 |
# tasks = ["Panoptic"]
|
116 |
+
|
117 |
# # inistalize task
|
118 |
# model.model.task_switch['spatial'] = False
|
119 |
# model.model.task_switch['visual'] = False
|
|
|
124 |
# assert isinstance(reftxt, list), f"reftxt should be a list of strings, but got {type(reftxt)}"
|
125 |
# model.model.task_switch['grounding'] = True
|
126 |
# predicts = {}
|
127 |
+
# for i, txt in enumerate(reftxt):
|
128 |
# data['text'] = txt
|
129 |
# batch_inputs = [data]
|
130 |
|
|
|
139 |
|
140 |
# temperature = model.model.sem_seg_head.predictor.lang_encoder.logit_scale
|
141 |
# out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
|
142 |
+
|
143 |
# matched_id = out_prob.max(0)[1]
|
144 |
# pred_masks_pos = pred_masks[matched_id,:,:]
|
145 |
# pred_class = results['pred_logits'][0][matched_id].max(dim=-1)[1]
|
|
|
154 |
# pred_mask_prob = F.interpolate(pred_masks_pos[None,], image_size[-2:], mode='bilinear')[0,:,:data['height'],:data['width']].sigmoid().cpu().numpy()
|
155 |
# #pred_masks_pos = 1*(pred_mask_prob > 0.5)
|
156 |
# predicts[txt] = pred_mask_prob[0]
|
157 |
+
|
158 |
# masks = combine_masks(predicts)
|
159 |
+
|
160 |
# predict_mask_stats = {}
|
161 |
# print(masks.keys())
|
162 |
# for i, txt in enumerate(masks):
|
163 |
# mask = masks[txt]
|
164 |
# demo = visual.draw_binary_mask(mask, color=colors_list[i], text=txt)
|
165 |
# predict_mask_stats[txt] = mask_stats((predicts[txt]*255), image_ori)
|
166 |
+
|
167 |
# res = demo.get_image()
|
168 |
# torch.cuda.empty_cache()
|
169 |
# # return Image.fromarray(res), stroke_inimg, stroke_refimg
|
170 |
# return Image.fromarray(res), None, predict_mask_stats
|
|
inference_utils/model.py
CHANGED
@@ -10,14 +10,18 @@
|
|
10 |
# See the License for the specific language governing permissions and
|
11 |
# limitations under the License.
|
12 |
|
|
|
13 |
import os
|
|
|
|
|
14 |
from PIL import Image
|
15 |
from huggingface_hub import hf_hub_download
|
16 |
import matplotlib.pyplot as plt
|
17 |
import numpy as np
|
18 |
import torch
|
19 |
-
from inference_utils.inference import interactive_infer_image
|
20 |
|
|
|
|
|
21 |
from modeling import build_model
|
22 |
from modeling.BaseModel import BaseModel
|
23 |
from utilities.arguments import load_opt_from_config_files
|
@@ -25,15 +29,35 @@ from utilities.constants import BIOMED_CLASSES
|
|
25 |
from utilities.distributed import init_distributed
|
26 |
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
class Model:
|
29 |
def init(self):
|
30 |
self._model = init_model()
|
31 |
|
32 |
-
def predict(
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
|
36 |
-
def init_model():
|
37 |
# Download model
|
38 |
model_file = hf_hub_download(
|
39 |
repo_id="microsoft/BiomedParse",
|
@@ -55,33 +79,77 @@ def init_model():
|
|
55 |
return model
|
56 |
|
57 |
|
58 |
-
def predict(
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
61 |
|
62 |
# Convert to RGB if needed
|
63 |
if image.mode != "RGB":
|
64 |
image = image.convert("RGB")
|
65 |
|
66 |
# Get predictions
|
67 |
-
pred_mask = interactive_infer_image(model, image,
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
)
|
74 |
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
|
78 |
-
def generate_colors(n):
|
79 |
cmap = plt.get_cmap("tab10")
|
80 |
-
colors = [
|
|
|
|
|
|
|
81 |
return colors
|
82 |
|
83 |
|
84 |
-
def overlay_masks(
|
|
|
|
|
|
|
|
|
85 |
overlay = image.copy()
|
86 |
overlay = np.array(overlay, dtype=np.uint8)
|
87 |
for mask, color in zip(masks, colors):
|
|
|
10 |
# See the License for the specific language governing permissions and
|
11 |
# limitations under the License.
|
12 |
|
13 |
+
from dataclasses import dataclass
|
14 |
import os
|
15 |
+
from typing import Tuple
|
16 |
+
|
17 |
from PIL import Image
|
18 |
from huggingface_hub import hf_hub_download
|
19 |
import matplotlib.pyplot as plt
|
20 |
import numpy as np
|
21 |
import torch
|
|
|
22 |
|
23 |
+
from inference_utils.inference import interactive_infer_image
|
24 |
+
from inference_utils.output_processing import check_mask_stats
|
25 |
from modeling import build_model
|
26 |
from modeling.BaseModel import BaseModel
|
27 |
from utilities.arguments import load_opt_from_config_files
|
|
|
29 |
from utilities.distributed import init_distributed
|
30 |
|
31 |
|
32 |
+
zero_tensor = torch.zeros(1, 1, 1)
|
33 |
+
|
34 |
+
|
35 |
+
@dataclass
|
36 |
+
class PredictionTarget:
|
37 |
+
target: str
|
38 |
+
pred_mask: torch.Tensor = zero_tensor
|
39 |
+
adjusted_p_value: float = -1.0
|
40 |
+
|
41 |
+
|
42 |
class Model:
|
43 |
def init(self):
|
44 |
self._model = init_model()
|
45 |
|
46 |
+
def predict(
|
47 |
+
self, image: Image.Image, modality_type: str, targets: list[str]
|
48 |
+
) -> Tuple[Image.Image, str]:
|
49 |
+
image_annotated, prediction_targets_not_found = predict(
|
50 |
+
self._model, image, modality_type, targets
|
51 |
+
)
|
52 |
+
targets_not_found_str = (
|
53 |
+
"\n".join(t.target for t in prediction_targets_not_found)
|
54 |
+
if prediction_targets_not_found
|
55 |
+
else "All targets were found!"
|
56 |
+
)
|
57 |
+
return image_annotated, targets_not_found_str
|
58 |
|
59 |
|
60 |
+
def init_model() -> BaseModel:
|
61 |
# Download model
|
62 |
model_file = hf_hub_download(
|
63 |
repo_id="microsoft/BiomedParse",
|
|
|
79 |
return model
|
80 |
|
81 |
|
82 |
+
def predict(
|
83 |
+
model: BaseModel, image: Image.Image, modality_type: str, targets: list[str]
|
84 |
+
) -> Tuple[Image.Image, list[PredictionTarget]]:
|
85 |
+
assert len(targets) > 0, "At least one target is required"
|
86 |
+
|
87 |
+
prediction_tasks = [PredictionTarget(target=target) for target in targets]
|
88 |
|
89 |
# Convert to RGB if needed
|
90 |
if image.mode != "RGB":
|
91 |
image = image.convert("RGB")
|
92 |
|
93 |
# Get predictions
|
94 |
+
pred_mask = interactive_infer_image(model, image, targets)
|
95 |
|
96 |
+
for i, pt in enumerate(prediction_tasks):
|
97 |
+
pt.pred_mask = pred_mask[i]
|
98 |
+
|
99 |
+
image_np = np.array(image)
|
100 |
+
|
101 |
+
for pt in prediction_tasks:
|
102 |
+
adj_p_value = check_mask_stats(
|
103 |
+
image_np, pt.pred_mask * 255, modality_type, pt.target
|
104 |
+
)
|
105 |
+
pt.adjusted_p_value = float(adj_p_value)
|
106 |
+
|
107 |
+
pred_tasks_found, pred_tasks_not_found = segregate_prediction_tasks(
|
108 |
+
prediction_tasks, 0.05
|
109 |
)
|
110 |
|
111 |
+
# Generate visualization
|
112 |
+
colors = generate_colors(len(pred_tasks_found))
|
113 |
+
masks = [1 * (pred_mask[i] > 0.5) for i in range(len(pred_tasks_found))]
|
114 |
+
pred_overlay = overlay_masks(image, masks, colors)
|
115 |
+
|
116 |
+
return pred_overlay, pred_tasks_not_found
|
117 |
+
|
118 |
+
|
119 |
+
def segregate_prediction_tasks(
|
120 |
+
prediction_tasks: list[PredictionTarget], p_value_threshold: float
|
121 |
+
) -> tuple[list[PredictionTarget], list[PredictionTarget]]:
|
122 |
+
"""Segregates Prediction Tasks by p-value
|
123 |
+
|
124 |
+
Prediction tasks with a p-value higher than p_value_threshold go into the targets_found list.
|
125 |
+
Otherwise, they go into the targets_not_found list.
|
126 |
+
"""
|
127 |
+
|
128 |
+
targets_found = []
|
129 |
+
targets_not_found = []
|
130 |
+
for pt in prediction_tasks:
|
131 |
+
if pt.adjusted_p_value > p_value_threshold:
|
132 |
+
targets_found.append(pt)
|
133 |
+
else:
|
134 |
+
targets_not_found.append(pt)
|
135 |
+
|
136 |
+
return targets_found, targets_not_found
|
137 |
|
138 |
|
139 |
+
def generate_colors(n: int) -> list[Tuple[int, int, int]]:
|
140 |
cmap = plt.get_cmap("tab10")
|
141 |
+
colors = [
|
142 |
+
(int(255 * cmap(i)[0]), int(255 * cmap(i)[1]), int(255 * cmap(i)[2]))
|
143 |
+
for i in range(n)
|
144 |
+
]
|
145 |
return colors
|
146 |
|
147 |
|
148 |
+
def overlay_masks(
|
149 |
+
image: Image.Image,
|
150 |
+
masks: list[np.ndarray],
|
151 |
+
colors: list[Tuple[int, int, int]],
|
152 |
+
) -> Image.Image:
|
153 |
overlay = image.copy()
|
154 |
overlay = np.array(overlay, dtype=np.uint8)
|
155 |
for mask, color in zip(masks, colors):
|
inference_utils/model_mock.py
CHANGED
@@ -12,9 +12,7 @@
|
|
12 |
|
13 |
|
14 |
from typing import Tuple
|
15 |
-
from PIL import ImageDraw, ImageFont
|
16 |
-
from PIL.Image import Image
|
17 |
-
import gradio as gr
|
18 |
import random
|
19 |
|
20 |
|
@@ -23,8 +21,8 @@ class Model:
|
|
23 |
pass
|
24 |
|
25 |
def predict(
|
26 |
-
self, image: Image, modality_type: str, targets: list[str]
|
27 |
-
) -> Tuple[Image, str]:
|
28 |
# Randomly split targets into found and not found
|
29 |
targets_found = random.sample(targets, k=len(targets) // 2)
|
30 |
targets_not_found = [t for t in targets if t not in targets_found]
|
|
|
12 |
|
13 |
|
14 |
from typing import Tuple
|
15 |
+
from PIL import ImageDraw, ImageFont, Image
|
|
|
|
|
16 |
import random
|
17 |
|
18 |
|
|
|
21 |
pass
|
22 |
|
23 |
def predict(
|
24 |
+
self, image: Image.Image, modality_type: str, targets: list[str]
|
25 |
+
) -> Tuple[Image.Image, str]:
|
26 |
# Randomly split targets into found and not found
|
27 |
targets_found = random.sample(targets, k=len(targets) // 2)
|
28 |
targets_not_found = [t for t in targets if t not in targets_found]
|
pyproject.toml
CHANGED
@@ -7,6 +7,7 @@ requires-python = ">=3.9"
|
|
7 |
dependencies = [
|
8 |
"gradio==4.44.1",
|
9 |
"pytest>=8.3.4",
|
|
|
10 |
]
|
11 |
|
12 |
[tool.pytest.ini_options]
|
|
|
7 |
dependencies = [
|
8 |
"gradio==4.44.1",
|
9 |
"pytest>=8.3.4",
|
10 |
+
"torch>=2.5.1",
|
11 |
]
|
12 |
|
13 |
[tool.pytest.ini_options]
|
uv.lock
CHANGED
@@ -46,12 +46,14 @@ source = { virtual = "." }
|
|
46 |
dependencies = [
|
47 |
{ name = "gradio" },
|
48 |
{ name = "pytest" },
|
|
|
49 |
]
|
50 |
|
51 |
[package.metadata]
|
52 |
requires-dist = [
|
53 |
{ name = "gradio", specifier = "==4.44.1" },
|
54 |
{ name = "pytest", specifier = ">=8.3.4" },
|
|
|
55 |
]
|
56 |
|
57 |
[[package]]
|
@@ -722,6 +724,24 @@ wheels = [
|
|
722 |
{ url = "https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8", size = 9979 },
|
723 |
]
|
724 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
725 |
[[package]]
|
726 |
name = "numpy"
|
727 |
version = "2.0.2"
|
@@ -774,6 +794,126 @@ wheels = [
|
|
774 |
{ url = "https://files.pythonhosted.org/packages/cc/dc/d330a6faefd92b446ec0f0dfea4c3207bb1fef3c4771d19cf4543efd2c78/numpy-2.0.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a46288ec55ebbd58947d31d72be2c63cbf839f0a63b49cb755022310792a3385", size = 15828784 },
|
775 |
]
|
776 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
777 |
[[package]]
|
778 |
name = "orjson"
|
779 |
version = "3.10.13"
|
@@ -1294,6 +1434,15 @@ wheels = [
|
|
1294 |
{ url = "https://files.pythonhosted.org/packages/6a/23/8146aad7d88f4fcb3a6218f41a60f6c2d4e3a72de72da1825dc7c8f7877c/semantic_version-2.10.0-py2.py3-none-any.whl", hash = "sha256:de78a3b8e0feda74cabc54aab2da702113e33ac9d9eb9d2389bcf1f58b7d9177", size = 15552 },
|
1295 |
]
|
1296 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1297 |
[[package]]
|
1298 |
name = "shellingham"
|
1299 |
version = "1.5.4"
|
@@ -1334,6 +1483,18 @@ wheels = [
|
|
1334 |
{ url = "https://files.pythonhosted.org/packages/96/00/2b325970b3060c7cecebab6d295afe763365822b1306a12eeab198f74323/starlette-0.41.3-py3-none-any.whl", hash = "sha256:44cedb2b7c77a9de33a8b74b2b90e9f50d11fcf25d8270ea525ad71a25374ff7", size = 73225 },
|
1335 |
]
|
1336 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1337 |
[[package]]
|
1338 |
name = "tomli"
|
1339 |
version = "2.2.1"
|
@@ -1382,6 +1543,52 @@ wheels = [
|
|
1382 |
{ url = "https://files.pythonhosted.org/packages/68/4f/12207897848a653d03ebbf6775a29d949408ded5f99b2d87198bc5c93508/tomlkit-0.12.0-py3-none-any.whl", hash = "sha256:926f1f37a1587c7a4f6c7484dae538f1345d96d793d9adab5d3675957b1d0766", size = 37334 },
|
1383 |
]
|
1384 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1385 |
[[package]]
|
1386 |
name = "tqdm"
|
1387 |
version = "4.67.1"
|
@@ -1394,6 +1601,20 @@ wheels = [
|
|
1394 |
{ url = "https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl", hash = "sha256:26445eca388f82e72884e0d580d5464cd801a3ea01e63e5601bdff9ba6a48de2", size = 78540 },
|
1395 |
]
|
1396 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1397 |
[[package]]
|
1398 |
name = "typer"
|
1399 |
version = "0.15.1"
|
|
|
46 |
dependencies = [
|
47 |
{ name = "gradio" },
|
48 |
{ name = "pytest" },
|
49 |
+
{ name = "torch" },
|
50 |
]
|
51 |
|
52 |
[package.metadata]
|
53 |
requires-dist = [
|
54 |
{ name = "gradio", specifier = "==4.44.1" },
|
55 |
{ name = "pytest", specifier = ">=8.3.4" },
|
56 |
+
{ name = "torch", specifier = ">=2.5.1" },
|
57 |
]
|
58 |
|
59 |
[[package]]
|
|
|
724 |
{ url = "https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8", size = 9979 },
|
725 |
]
|
726 |
|
727 |
+
[[package]]
|
728 |
+
name = "mpmath"
|
729 |
+
version = "1.3.0"
|
730 |
+
source = { registry = "https://pypi.org/simple" }
|
731 |
+
sdist = { url = "https://files.pythonhosted.org/packages/e0/47/dd32fa426cc72114383ac549964eecb20ecfd886d1e5ccf5340b55b02f57/mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f", size = 508106 }
|
732 |
+
wheels = [
|
733 |
+
{ url = "https://files.pythonhosted.org/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c", size = 536198 },
|
734 |
+
]
|
735 |
+
|
736 |
+
[[package]]
|
737 |
+
name = "networkx"
|
738 |
+
version = "3.2.1"
|
739 |
+
source = { registry = "https://pypi.org/simple" }
|
740 |
+
sdist = { url = "https://files.pythonhosted.org/packages/c4/80/a84676339aaae2f1cfdf9f418701dd634aef9cc76f708ef55c36ff39c3ca/networkx-3.2.1.tar.gz", hash = "sha256:9f1bb5cf3409bf324e0a722c20bdb4c20ee39bf1c30ce8ae499c8502b0b5e0c6", size = 2073928 }
|
741 |
+
wheels = [
|
742 |
+
{ url = "https://files.pythonhosted.org/packages/d5/f0/8fbc882ca80cf077f1b246c0e3c3465f7f415439bdea6b899f6b19f61f70/networkx-3.2.1-py3-none-any.whl", hash = "sha256:f18c69adc97877c42332c170849c96cefa91881c99a7cb3e95b7c659ebdc1ec2", size = 1647772 },
|
743 |
+
]
|
744 |
+
|
745 |
[[package]]
|
746 |
name = "numpy"
|
747 |
version = "2.0.2"
|
|
|
794 |
{ url = "https://files.pythonhosted.org/packages/cc/dc/d330a6faefd92b446ec0f0dfea4c3207bb1fef3c4771d19cf4543efd2c78/numpy-2.0.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a46288ec55ebbd58947d31d72be2c63cbf839f0a63b49cb755022310792a3385", size = 15828784 },
|
795 |
]
|
796 |
|
797 |
+
[[package]]
|
798 |
+
name = "nvidia-cublas-cu12"
|
799 |
+
version = "12.4.5.8"
|
800 |
+
source = { registry = "https://pypi.org/simple" }
|
801 |
+
wheels = [
|
802 |
+
{ url = "https://files.pythonhosted.org/packages/7f/7f/7fbae15a3982dc9595e49ce0f19332423b260045d0a6afe93cdbe2f1f624/nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_aarch64.whl", hash = "sha256:0f8aa1706812e00b9f19dfe0cdb3999b092ccb8ca168c0db5b8ea712456fd9b3", size = 363333771 },
|
803 |
+
{ url = "https://files.pythonhosted.org/packages/ae/71/1c91302526c45ab494c23f61c7a84aa568b8c1f9d196efa5993957faf906/nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl", hash = "sha256:2fc8da60df463fdefa81e323eef2e36489e1c94335b5358bcb38360adf75ac9b", size = 363438805 },
|
804 |
+
]
|
805 |
+
|
806 |
+
[[package]]
|
807 |
+
name = "nvidia-cuda-cupti-cu12"
|
808 |
+
version = "12.4.127"
|
809 |
+
source = { registry = "https://pypi.org/simple" }
|
810 |
+
wheels = [
|
811 |
+
{ url = "https://files.pythonhosted.org/packages/93/b5/9fb3d00386d3361b03874246190dfec7b206fd74e6e287b26a8fcb359d95/nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:79279b35cf6f91da114182a5ce1864997fd52294a87a16179ce275773799458a", size = 12354556 },
|
812 |
+
{ url = "https://files.pythonhosted.org/packages/67/42/f4f60238e8194a3106d06a058d494b18e006c10bb2b915655bd9f6ea4cb1/nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:9dec60f5ac126f7bb551c055072b69d85392b13311fcc1bcda2202d172df30fb", size = 13813957 },
|
813 |
+
]
|
814 |
+
|
815 |
+
[[package]]
|
816 |
+
name = "nvidia-cuda-nvrtc-cu12"
|
817 |
+
version = "12.4.127"
|
818 |
+
source = { registry = "https://pypi.org/simple" }
|
819 |
+
wheels = [
|
820 |
+
{ url = "https://files.pythonhosted.org/packages/77/aa/083b01c427e963ad0b314040565ea396f914349914c298556484f799e61b/nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:0eedf14185e04b76aa05b1fea04133e59f465b6f960c0cbf4e37c3cb6b0ea198", size = 24133372 },
|
821 |
+
{ url = "https://files.pythonhosted.org/packages/2c/14/91ae57cd4db3f9ef7aa99f4019cfa8d54cb4caa7e00975df6467e9725a9f/nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:a178759ebb095827bd30ef56598ec182b85547f1508941a3d560eb7ea1fbf338", size = 24640306 },
|
822 |
+
]
|
823 |
+
|
824 |
+
[[package]]
|
825 |
+
name = "nvidia-cuda-runtime-cu12"
|
826 |
+
version = "12.4.127"
|
827 |
+
source = { registry = "https://pypi.org/simple" }
|
828 |
+
wheels = [
|
829 |
+
{ url = "https://files.pythonhosted.org/packages/a1/aa/b656d755f474e2084971e9a297def515938d56b466ab39624012070cb773/nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:961fe0e2e716a2a1d967aab7caee97512f71767f852f67432d572e36cb3a11f3", size = 894177 },
|
830 |
+
{ url = "https://files.pythonhosted.org/packages/ea/27/1795d86fe88ef397885f2e580ac37628ed058a92ed2c39dc8eac3adf0619/nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:64403288fa2136ee8e467cdc9c9427e0434110899d07c779f25b5c068934faa5", size = 883737 },
|
831 |
+
]
|
832 |
+
|
833 |
+
[[package]]
|
834 |
+
name = "nvidia-cudnn-cu12"
|
835 |
+
version = "9.1.0.70"
|
836 |
+
source = { registry = "https://pypi.org/simple" }
|
837 |
+
dependencies = [
|
838 |
+
{ name = "nvidia-cublas-cu12" },
|
839 |
+
]
|
840 |
+
wheels = [
|
841 |
+
{ url = "https://files.pythonhosted.org/packages/9f/fd/713452cd72343f682b1c7b9321e23829f00b842ceaedcda96e742ea0b0b3/nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl", hash = "sha256:165764f44ef8c61fcdfdfdbe769d687e06374059fbb388b6c89ecb0e28793a6f", size = 664752741 },
|
842 |
+
]
|
843 |
+
|
844 |
+
[[package]]
|
845 |
+
name = "nvidia-cufft-cu12"
|
846 |
+
version = "11.2.1.3"
|
847 |
+
source = { registry = "https://pypi.org/simple" }
|
848 |
+
dependencies = [
|
849 |
+
{ name = "nvidia-nvjitlink-cu12" },
|
850 |
+
]
|
851 |
+
wheels = [
|
852 |
+
{ url = "https://files.pythonhosted.org/packages/7a/8a/0e728f749baca3fbeffad762738276e5df60851958be7783af121a7221e7/nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_aarch64.whl", hash = "sha256:5dad8008fc7f92f5ddfa2101430917ce2ffacd86824914c82e28990ad7f00399", size = 211422548 },
|
853 |
+
{ url = "https://files.pythonhosted.org/packages/27/94/3266821f65b92b3138631e9c8e7fe1fb513804ac934485a8d05776e1dd43/nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl", hash = "sha256:f083fc24912aa410be21fa16d157fed2055dab1cc4b6934a0e03cba69eb242b9", size = 211459117 },
|
854 |
+
]
|
855 |
+
|
856 |
+
[[package]]
|
857 |
+
name = "nvidia-curand-cu12"
|
858 |
+
version = "10.3.5.147"
|
859 |
+
source = { registry = "https://pypi.org/simple" }
|
860 |
+
wheels = [
|
861 |
+
{ url = "https://files.pythonhosted.org/packages/80/9c/a79180e4d70995fdf030c6946991d0171555c6edf95c265c6b2bf7011112/nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_aarch64.whl", hash = "sha256:1f173f09e3e3c76ab084aba0de819c49e56614feae5c12f69883f4ae9bb5fad9", size = 56314811 },
|
862 |
+
{ url = "https://files.pythonhosted.org/packages/8a/6d/44ad094874c6f1b9c654f8ed939590bdc408349f137f9b98a3a23ccec411/nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl", hash = "sha256:a88f583d4e0bb643c49743469964103aa59f7f708d862c3ddb0fc07f851e3b8b", size = 56305206 },
|
863 |
+
]
|
864 |
+
|
865 |
+
[[package]]
|
866 |
+
name = "nvidia-cusolver-cu12"
|
867 |
+
version = "11.6.1.9"
|
868 |
+
source = { registry = "https://pypi.org/simple" }
|
869 |
+
dependencies = [
|
870 |
+
{ name = "nvidia-cublas-cu12" },
|
871 |
+
{ name = "nvidia-cusparse-cu12" },
|
872 |
+
{ name = "nvidia-nvjitlink-cu12" },
|
873 |
+
]
|
874 |
+
wheels = [
|
875 |
+
{ url = "https://files.pythonhosted.org/packages/46/6b/a5c33cf16af09166845345275c34ad2190944bcc6026797a39f8e0a282e0/nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_aarch64.whl", hash = "sha256:d338f155f174f90724bbde3758b7ac375a70ce8e706d70b018dd3375545fc84e", size = 127634111 },
|
876 |
+
{ url = "https://files.pythonhosted.org/packages/3a/e1/5b9089a4b2a4790dfdea8b3a006052cfecff58139d5a4e34cb1a51df8d6f/nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl", hash = "sha256:19e33fa442bcfd085b3086c4ebf7e8debc07cfe01e11513cc6d332fd918ac260", size = 127936057 },
|
877 |
+
]
|
878 |
+
|
879 |
+
[[package]]
|
880 |
+
name = "nvidia-cusparse-cu12"
|
881 |
+
version = "12.3.1.170"
|
882 |
+
source = { registry = "https://pypi.org/simple" }
|
883 |
+
dependencies = [
|
884 |
+
{ name = "nvidia-nvjitlink-cu12" },
|
885 |
+
]
|
886 |
+
wheels = [
|
887 |
+
{ url = "https://files.pythonhosted.org/packages/96/a9/c0d2f83a53d40a4a41be14cea6a0bf9e668ffcf8b004bd65633f433050c0/nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_aarch64.whl", hash = "sha256:9d32f62896231ebe0480efd8a7f702e143c98cfaa0e8a76df3386c1ba2b54df3", size = 207381987 },
|
888 |
+
{ url = "https://files.pythonhosted.org/packages/db/f7/97a9ea26ed4bbbfc2d470994b8b4f338ef663be97b8f677519ac195e113d/nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl", hash = "sha256:ea4f11a2904e2a8dc4b1833cc1b5181cde564edd0d5cd33e3c168eff2d1863f1", size = 207454763 },
|
889 |
+
]
|
890 |
+
|
891 |
+
[[package]]
|
892 |
+
name = "nvidia-nccl-cu12"
|
893 |
+
version = "2.21.5"
|
894 |
+
source = { registry = "https://pypi.org/simple" }
|
895 |
+
wheels = [
|
896 |
+
{ url = "https://files.pythonhosted.org/packages/df/99/12cd266d6233f47d00daf3a72739872bdc10267d0383508b0b9c84a18bb6/nvidia_nccl_cu12-2.21.5-py3-none-manylinux2014_x86_64.whl", hash = "sha256:8579076d30a8c24988834445f8d633c697d42397e92ffc3f63fa26766d25e0a0", size = 188654414 },
|
897 |
+
]
|
898 |
+
|
899 |
+
[[package]]
|
900 |
+
name = "nvidia-nvjitlink-cu12"
|
901 |
+
version = "12.4.127"
|
902 |
+
source = { registry = "https://pypi.org/simple" }
|
903 |
+
wheels = [
|
904 |
+
{ url = "https://files.pythonhosted.org/packages/02/45/239d52c05074898a80a900f49b1615d81c07fceadd5ad6c4f86a987c0bc4/nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:4abe7fef64914ccfa909bc2ba39739670ecc9e820c83ccc7a6ed414122599b83", size = 20552510 },
|
905 |
+
{ url = "https://files.pythonhosted.org/packages/ff/ff/847841bacfbefc97a00036e0fce5a0f086b640756dc38caea5e1bb002655/nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:06b3b9b25bf3f8af351d664978ca26a16d2c5127dbd53c0497e28d1fb9611d57", size = 21066810 },
|
906 |
+
]
|
907 |
+
|
908 |
+
[[package]]
|
909 |
+
name = "nvidia-nvtx-cu12"
|
910 |
+
version = "12.4.127"
|
911 |
+
source = { registry = "https://pypi.org/simple" }
|
912 |
+
wheels = [
|
913 |
+
{ url = "https://files.pythonhosted.org/packages/06/39/471f581edbb7804b39e8063d92fc8305bdc7a80ae5c07dbe6ea5c50d14a5/nvidia_nvtx_cu12-12.4.127-py3-none-manylinux2014_aarch64.whl", hash = "sha256:7959ad635db13edf4fc65c06a6e9f9e55fc2f92596db928d169c0bb031e88ef3", size = 100417 },
|
914 |
+
{ url = "https://files.pythonhosted.org/packages/87/20/199b8713428322a2f22b722c62b8cc278cc53dffa9705d744484b5035ee9/nvidia_nvtx_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:781e950d9b9f60d8241ccea575b32f5105a5baf4c2351cab5256a24869f12a1a", size = 99144 },
|
915 |
+
]
|
916 |
+
|
917 |
[[package]]
|
918 |
name = "orjson"
|
919 |
version = "3.10.13"
|
|
|
1434 |
{ url = "https://files.pythonhosted.org/packages/6a/23/8146aad7d88f4fcb3a6218f41a60f6c2d4e3a72de72da1825dc7c8f7877c/semantic_version-2.10.0-py2.py3-none-any.whl", hash = "sha256:de78a3b8e0feda74cabc54aab2da702113e33ac9d9eb9d2389bcf1f58b7d9177", size = 15552 },
|
1435 |
]
|
1436 |
|
1437 |
+
[[package]]
|
1438 |
+
name = "setuptools"
|
1439 |
+
version = "75.6.0"
|
1440 |
+
source = { registry = "https://pypi.org/simple" }
|
1441 |
+
sdist = { url = "https://files.pythonhosted.org/packages/43/54/292f26c208734e9a7f067aea4a7e282c080750c4546559b58e2e45413ca0/setuptools-75.6.0.tar.gz", hash = "sha256:8199222558df7c86216af4f84c30e9b34a61d8ba19366cc914424cdbd28252f6", size = 1337429 }
|
1442 |
+
wheels = [
|
1443 |
+
{ url = "https://files.pythonhosted.org/packages/55/21/47d163f615df1d30c094f6c8bbb353619274edccf0327b185cc2493c2c33/setuptools-75.6.0-py3-none-any.whl", hash = "sha256:ce74b49e8f7110f9bf04883b730f4765b774ef3ef28f722cce7c273d253aaf7d", size = 1224032 },
|
1444 |
+
]
|
1445 |
+
|
1446 |
[[package]]
|
1447 |
name = "shellingham"
|
1448 |
version = "1.5.4"
|
|
|
1483 |
{ url = "https://files.pythonhosted.org/packages/96/00/2b325970b3060c7cecebab6d295afe763365822b1306a12eeab198f74323/starlette-0.41.3-py3-none-any.whl", hash = "sha256:44cedb2b7c77a9de33a8b74b2b90e9f50d11fcf25d8270ea525ad71a25374ff7", size = 73225 },
|
1484 |
]
|
1485 |
|
1486 |
+
[[package]]
|
1487 |
+
name = "sympy"
|
1488 |
+
version = "1.13.1"
|
1489 |
+
source = { registry = "https://pypi.org/simple" }
|
1490 |
+
dependencies = [
|
1491 |
+
{ name = "mpmath" },
|
1492 |
+
]
|
1493 |
+
sdist = { url = "https://files.pythonhosted.org/packages/ca/99/5a5b6f19ff9f083671ddf7b9632028436167cd3d33e11015754e41b249a4/sympy-1.13.1.tar.gz", hash = "sha256:9cebf7e04ff162015ce31c9c6c9144daa34a93bd082f54fd8f12deca4f47515f", size = 7533040 }
|
1494 |
+
wheels = [
|
1495 |
+
{ url = "https://files.pythonhosted.org/packages/b2/fe/81695a1aa331a842b582453b605175f419fe8540355886031328089d840a/sympy-1.13.1-py3-none-any.whl", hash = "sha256:db36cdc64bf61b9b24578b6f7bab1ecdd2452cf008f34faa33776680c26d66f8", size = 6189177 },
|
1496 |
+
]
|
1497 |
+
|
1498 |
[[package]]
|
1499 |
name = "tomli"
|
1500 |
version = "2.2.1"
|
|
|
1543 |
{ url = "https://files.pythonhosted.org/packages/68/4f/12207897848a653d03ebbf6775a29d949408ded5f99b2d87198bc5c93508/tomlkit-0.12.0-py3-none-any.whl", hash = "sha256:926f1f37a1587c7a4f6c7484dae538f1345d96d793d9adab5d3675957b1d0766", size = 37334 },
|
1544 |
]
|
1545 |
|
1546 |
+
[[package]]
|
1547 |
+
name = "torch"
|
1548 |
+
version = "2.5.1"
|
1549 |
+
source = { registry = "https://pypi.org/simple" }
|
1550 |
+
dependencies = [
|
1551 |
+
{ name = "filelock" },
|
1552 |
+
{ name = "fsspec" },
|
1553 |
+
{ name = "jinja2" },
|
1554 |
+
{ name = "networkx" },
|
1555 |
+
{ name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1556 |
+
{ name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1557 |
+
{ name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1558 |
+
{ name = "nvidia-cuda-runtime-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1559 |
+
{ name = "nvidia-cudnn-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1560 |
+
{ name = "nvidia-cufft-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1561 |
+
{ name = "nvidia-curand-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1562 |
+
{ name = "nvidia-cusolver-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1563 |
+
{ name = "nvidia-cusparse-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1564 |
+
{ name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1565 |
+
{ name = "nvidia-nvjitlink-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1566 |
+
{ name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1567 |
+
{ name = "setuptools", marker = "python_full_version >= '3.12'" },
|
1568 |
+
{ name = "sympy" },
|
1569 |
+
{ name = "triton", marker = "python_full_version < '3.13' and platform_machine == 'x86_64' and platform_system == 'Linux'" },
|
1570 |
+
{ name = "typing-extensions" },
|
1571 |
+
]
|
1572 |
+
wheels = [
|
1573 |
+
{ url = "https://files.pythonhosted.org/packages/2a/ef/834af4a885b31a0b32fff2d80e1e40f771e1566ea8ded55347502440786a/torch-2.5.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:71328e1bbe39d213b8721678f9dcac30dfc452a46d586f1d514a6aa0a99d4744", size = 906446312 },
|
1574 |
+
{ url = "https://files.pythonhosted.org/packages/69/f0/46e74e0d145f43fa506cb336eaefb2d240547e4ce1f496e442711093ab25/torch-2.5.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:34bfa1a852e5714cbfa17f27c49d8ce35e1b7af5608c4bc6e81392c352dbc601", size = 91919522 },
|
1575 |
+
{ url = "https://files.pythonhosted.org/packages/a5/13/1eb674c8efbd04d71e4a157ceba991904f633e009a584dd65dccbafbb648/torch-2.5.1-cp310-cp310-win_amd64.whl", hash = "sha256:32a037bd98a241df6c93e4c789b683335da76a2ac142c0973675b715102dc5fa", size = 203088048 },
|
1576 |
+
{ url = "https://files.pythonhosted.org/packages/a9/9d/e0860474ee0ff8f6ef2c50ec8f71a250f38d78a9b9df9fd241ad3397a65b/torch-2.5.1-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:23d062bf70776a3d04dbe74db950db2a5245e1ba4f27208a87f0d743b0d06e86", size = 63877046 },
|
1577 |
+
{ url = "https://files.pythonhosted.org/packages/d1/35/e8b2daf02ce933e4518e6f5682c72fd0ed66c15910ea1fb4168f442b71c4/torch-2.5.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:de5b7d6740c4b636ef4db92be922f0edc425b65ed78c5076c43c42d362a45457", size = 906474467 },
|
1578 |
+
{ url = "https://files.pythonhosted.org/packages/40/04/bd91593a4ca178ece93ca55f27e2783aa524aaccbfda66831d59a054c31e/torch-2.5.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:340ce0432cad0d37f5a31be666896e16788f1adf8ad7be481196b503dad675b9", size = 91919450 },
|
1579 |
+
{ url = "https://files.pythonhosted.org/packages/0d/4a/e51420d46cfc90562e85af2fee912237c662ab31140ab179e49bd69401d6/torch-2.5.1-cp311-cp311-win_amd64.whl", hash = "sha256:603c52d2fe06433c18b747d25f5c333f9c1d58615620578c326d66f258686f9a", size = 203098237 },
|
1580 |
+
{ url = "https://files.pythonhosted.org/packages/d0/db/5d9cbfbc7968d79c5c09a0bc0bc3735da079f2fd07cc10498a62b320a480/torch-2.5.1-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:31f8c39660962f9ae4eeec995e3049b5492eb7360dd4f07377658ef4d728fa4c", size = 63884466 },
|
1581 |
+
{ url = "https://files.pythonhosted.org/packages/8b/5c/36c114d120bfe10f9323ed35061bc5878cc74f3f594003854b0ea298942f/torch-2.5.1-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:ed231a4b3a5952177fafb661213d690a72caaad97d5824dd4fc17ab9e15cec03", size = 906389343 },
|
1582 |
+
{ url = "https://files.pythonhosted.org/packages/6d/69/d8ada8b6e0a4257556d5b4ddeb4345ea8eeaaef3c98b60d1cca197c7ad8e/torch-2.5.1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:3f4b7f10a247e0dcd7ea97dc2d3bfbfc90302ed36d7f3952b0008d0df264e697", size = 91811673 },
|
1583 |
+
{ url = "https://files.pythonhosted.org/packages/5f/ba/607d013b55b9fd805db2a5c2662ec7551f1910b4eef39653eeaba182c5b2/torch-2.5.1-cp312-cp312-win_amd64.whl", hash = "sha256:73e58e78f7d220917c5dbfad1a40e09df9929d3b95d25e57d9f8558f84c9a11c", size = 203046841 },
|
1584 |
+
{ url = "https://files.pythonhosted.org/packages/57/6c/bf52ff061da33deb9f94f4121fde7ff3058812cb7d2036c97bc167793bd1/torch-2.5.1-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:8c712df61101964eb11910a846514011f0b6f5920c55dbf567bff8a34163d5b1", size = 63858109 },
|
1585 |
+
{ url = "https://files.pythonhosted.org/packages/69/72/20cb30f3b39a9face296491a86adb6ff8f1a47a897e4d14667e6cf89d5c3/torch-2.5.1-cp313-cp313-manylinux1_x86_64.whl", hash = "sha256:9b61edf3b4f6e3b0e0adda8b3960266b9009d02b37555971f4d1c8f7a05afed7", size = 906393265 },
|
1586 |
+
{ url = "https://files.pythonhosted.org/packages/a9/18/81c399e8f4f1580d34bf99d827cb5fb5cf7a18a266bb5d30ca3ec2e89ba6/torch-2.5.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:1f3b7fb3cf7ab97fae52161423f81be8c6b8afac8d9760823fd623994581e1a3", size = 906479005 },
|
1587 |
+
{ url = "https://files.pythonhosted.org/packages/5d/86/1c4b168d52cddb8d17952a7b5b25f69ef0da1fc34de1223d73d0d9db1801/torch-2.5.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:7974e3dce28b5a21fb554b73e1bc9072c25dde873fa00d54280861e7a009d7dc", size = 91846074 },
|
1588 |
+
{ url = "https://files.pythonhosted.org/packages/76/49/4a0a8b19ce8f9bf32fcab4e863c7e2366f519f9826c84ca250567b11a014/torch-2.5.1-cp39-cp39-win_amd64.whl", hash = "sha256:46c817d3ea33696ad3b9df5e774dba2257e9a4cd3c4a3afbf92f6bb13ac5ce2d", size = 203000888 },
|
1589 |
+
{ url = "https://files.pythonhosted.org/packages/25/07/3548a7cfcf69d0eccec2ee79ee3913f1cdaadb27b36946774db86729ee47/torch-2.5.1-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:8046768b7f6d35b85d101b4b38cba8aa2f3cd51952bc4c06a49580f2ce682291", size = 63876023 },
|
1590 |
+
]
|
1591 |
+
|
1592 |
[[package]]
|
1593 |
name = "tqdm"
|
1594 |
version = "4.67.1"
|
|
|
1601 |
{ url = "https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl", hash = "sha256:26445eca388f82e72884e0d580d5464cd801a3ea01e63e5601bdff9ba6a48de2", size = 78540 },
|
1602 |
]
|
1603 |
|
1604 |
+
[[package]]
|
1605 |
+
name = "triton"
|
1606 |
+
version = "3.1.0"
|
1607 |
+
source = { registry = "https://pypi.org/simple" }
|
1608 |
+
dependencies = [
|
1609 |
+
{ name = "filelock" },
|
1610 |
+
]
|
1611 |
+
wheels = [
|
1612 |
+
{ url = "https://files.pythonhosted.org/packages/98/29/69aa56dc0b2eb2602b553881e34243475ea2afd9699be042316842788ff5/triton-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6b0dd10a925263abbe9fa37dcde67a5e9b2383fc269fdf59f5657cac38c5d1d8", size = 209460013 },
|
1613 |
+
{ url = "https://files.pythonhosted.org/packages/86/17/d9a5cf4fcf46291856d1e90762e36cbabd2a56c7265da0d1d9508c8e3943/triton-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0f34f6e7885d1bf0eaaf7ba875a5f0ce6f3c13ba98f9503651c1e6dc6757ed5c", size = 209506424 },
|
1614 |
+
{ url = "https://files.pythonhosted.org/packages/78/eb/65f5ba83c2a123f6498a3097746607e5b2f16add29e36765305e4ac7fdd8/triton-3.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c8182f42fd8080a7d39d666814fa36c5e30cc00ea7eeeb1a2983dbb4c99a0fdc", size = 209551444 },
|
1615 |
+
{ url = "https://files.pythonhosted.org/packages/c4/69/57e0fed438d547524e08bfedc587078314176ad1c15c8be904d3f03149ec/triton-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aafa9a20cd0d9fee523cd4504aa7131807a864cd77dcf6efe7e981f18b8c6c11", size = 209460480 },
|
1616 |
+
]
|
1617 |
+
|
1618 |
[[package]]
|
1619 |
name = "typer"
|
1620 |
version = "0.15.1"
|