FaceRecognition / demo.py
justin2341's picture
Update demo.py
4b32201 verified
import gradio as gr
import requests
import datadog_api_client
import json
import io
import base64
from PIL import Image
def face_crop(image, face_rect):
x1 = face_rect.get('x1')
y1 = face_rect.get('y1')
x2 = face_rect.get('x2')
y2 = face_rect.get('y2')
width = x2 - x1 + 1
height = y2 - y1 + 1
if x1 < 0:
x1 = 0
if y1 < 0:
y1 = 0
if x2 >= image.width:
x2 = image.width - 1
if y2 >= image.height:
y2 = image.height - 1
face_image = image.crop((x1, y1, x2, y2))
face_image_ratio = face_image.width / float(face_image.height)
resized_w = int(face_image_ratio * 150)
resized_h = 150
face_image = face_image.resize((int(resized_w), int(resized_h)))
return face_image
def pil_image_to_base64(image, format="PNG"):
"""
Converts a PIL.Image object to a Base64-encoded string.
:param image: PIL.Image object
:param format: Format to save the image, e.g., "PNG", "JPEG"
:return: Base64-encoded string
"""
# Save the image to a BytesIO buffer
buffer = io.BytesIO()
image.save(buffer, format=format)
buffer.seek(0) # Rewind the buffer
# Convert the buffer's contents to a Base64 string
base64_string = base64.b64encode(buffer.getvalue()).decode('utf-8')
return base64_string
def compare_face(frame1, frame2):
url = "http://127.0.0.1:8080/compare_face"
files = {'file1': open(frame1, 'rb'), 'file2': open(frame2, 'rb')}
file1 = None
file2 = None
try:
file1 = open(frame1, 'rb')
except:
return "Failed to open image1"
try:
file2 = open(frame2, 'rb')
except:
return "Failed to open image2"
url = "http://127.0.0.1:8080/compare_face"
files = {'file1': file1, 'file2': file2}
result = requests.post(url=url, files=files)
if result.ok:
json_result = result.json()
if json_result.get("resultCode") != "Ok":
return json_result.get("resultCode")
try:
image1 = Image.open(frame1)
image2 = Image.open(frame2)
html = ""
faces1 = json_result.get("faces1", {})
faces2 = json_result.get("faces2", {})
results = json_result.get("results", {})
for result in results:
similarity = result.get('similarity')
face1_idx = result.get('face1')
face2_idx = result.get('face2')
face_image1 = face_crop(image1, faces1[face1_idx])
face_value1 = ('<img src="data:image/png;base64,{base64_image}" style="width: 100px; height: auto; object-fit: contain;"/>').format(base64_image=pil_image_to_base64(face_image1, format="PNG"))
face_image2 = face_crop(image2, faces2[face2_idx])
face_value2 = ('<img src="data:image/png;base64,{base64_image}" style="width: 100px; height: auto; object-fit: contain;"/>').format(base64_image=pil_image_to_base64(face_image2, format="PNG"))
match_icon = '<svg fill="red" width="19" height="32" viewBox="0 0 19 32"><path d="M0 13.92V10.2H19V13.92H0ZM0 21.64V17.92H19V21.64H0Z"></path><path d="M14.08 0H18.08L5.08 32H1.08L14.08 0Z"></path></svg>'
if similarity > 0.67:
match_icon = '<svg fill="green" width="19" height="32" viewBox="0 0 19 32"><path d="M0 13.9202V10.2002H19V13.9202H0ZM0 21.6402V17.9202H19V21.6402H0Z"></path></svg>'
item_value = ('<div style="align-items: center; gap: 10px; display: flex; flex-direction: column;">'
'<div style="display: flex; align-items: center; gap: 20px;">'
'{face_value1}'
'{match_icon}'
'{face_value2}'
'</div>'
'<div style="text-align: center; margin-top: 10px;">'
'Similarity: {similarity}'
'</div>'
'</div>'
).format(face_value1=face_value1, face_value2=face_value2, match_icon=match_icon, similarity=f"{similarity:.2f}")
html += item_value
html += '<hr style="border: 1px solid #C0C0C0; margin: 10px 0;"/>'
return html
except:
return "Processing failed"
else:
return result.text
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=7):
with gr.Row():
with gr.Column():
image_input1 = gr.Image(type='filepath')
gr.Examples(['face_examples/1.jpg', 'face_examples/3.jpg', 'face_examples/7.jpg', 'face_examples/9.jpg'],
inputs=image_input1)
with gr.Column():
image_input2 = gr.Image(type='filepath')
gr.Examples(['face_examples/2.jpg', 'face_examples/4.jpg', 'face_examples/8.jpg', 'face_examples/10.jpg'],
inputs=image_input2)
face_recog_button = gr.Button("Compare Face", variant="primary", size="lg")
with gr.Column(scale=3):
recog_html_output = gr.HTML()
face_recog_button.click(compare_face, inputs=[image_input1, image_input2], outputs=recog_html_output)
demo.launch(server_name="0.0.0.0", server_port=7860)