ibombonato commited on
Commit
739a7b0
·
1 Parent(s): 7297268

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -52
app.py CHANGED
@@ -41,12 +41,7 @@ def get_chunk_times(in_filename, silence_threshold, silence_duration=1):
41
 
42
  logging.info(f"TS audio {os.path.basename(in_filename)} = {ts}")
43
  return ts, chunks
44
-
45
- def get_plot(a):
46
- x = [1, 2, 3]
47
- y = np.array([[1, 2], [3, 4], [5, 6]])
48
- plt.plot(x, y)
49
- return plt.gcf()
50
 
51
  def get_audio_plot(filename, chunks):
52
  fig, ax = plt.subplots()
@@ -70,9 +65,9 @@ def get_audio_plot(filename, chunks):
70
  plt.xlabel('Time [s]')
71
  plt.ylabel('Amplitude')
72
  plt.title(os.path.basename(filename))
73
-
74
- #plt.show()
75
  return plt.gcf()
 
76
 
77
  def get_audio_info(audio):
78
  ts, chunks = get_chunk_times(audio.name, 30, 1)
@@ -94,47 +89,4 @@ iface = gr.Interface(
94
  description="Enter .WAV audio to view silence areas",
95
  )
96
 
97
- iface.test_launch()
98
- iface.launch()
99
-
100
- # import matplotlib.pyplot as plt
101
- # import numpy as np
102
- # import pandas as pd
103
-
104
- # import gradio as gr
105
- # import matplotlib
106
-
107
- # matplotlib.use('Agg')
108
-
109
-
110
- # iaudio = gr.inputs.Audio(source="upload", type="file", label=None)
111
-
112
- # def sales_projections(employee_data):
113
- # sales_data = employee_data.iloc[:, 1:4].astype("int").to_numpy()
114
- # regression_values = np.apply_along_axis(
115
- # lambda row: np.array(np.poly1d(np.polyfit([0, 1, 2], row, 2))), 0, sales_data
116
- # )
117
- # projected_months = np.repeat(
118
- # np.expand_dims(np.arange(3, 12), 0), len(sales_data), axis=0
119
- # )
120
- # projected_values = np.array(
121
- # [
122
- # month * month * regression[0] + month * regression[1] + regression[2]
123
- # for month, regression in zip(projected_months, regression_values)
124
- # ]
125
- # )
126
- # # x = [1, 2, 3]
127
- # # y = np.array([[1, 2], [3, 4], [5, 6]])
128
- # # plt.plot(x, y)
129
- # #plt.plot(projected_values.T)
130
- # #plt.legend(employee_data["Name"])
131
- # return employee_data, get_plot(1), regression_values
132
-
133
-
134
- # iface = gr.Interface(
135
- # get_plot,
136
- # iaudio,
137
- # ["plot"],
138
- # description="Enter sales figures for employees to predict sales trajectory over year.",
139
- # )
140
- # iface.launch()
 
41
 
42
  logging.info(f"TS audio {os.path.basename(in_filename)} = {ts}")
43
  return ts, chunks
44
+
 
 
 
 
 
45
 
46
  def get_audio_plot(filename, chunks):
47
  fig, ax = plt.subplots()
 
65
  plt.xlabel('Time [s]')
66
  plt.ylabel('Amplitude')
67
  plt.title(os.path.basename(filename))
68
+
 
69
  return plt.gcf()
70
+
71
 
72
  def get_audio_info(audio):
73
  ts, chunks = get_chunk_times(audio.name, 30, 1)
 
89
  description="Enter .WAV audio to view silence areas",
90
  )
91
 
92
+ iface.launch()