import os import streamlit as st from st_aggrid import AgGrid import pandas as pd from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer # Set the page layout for Streamlit st.set_page_config(layout="wide") # CSS styling # ... (keep your existing CSS code) # Initialize TAPAS pipeline tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq", device="cpu") # Initialize T5 tokenizer and model for text generation t5_tokenizer = T5Tokenizer.from_pretrained("t5-small") t5_model = T5ForConditionalGeneration.from_pretrained("t5-small") # Title and Introduction st.title("HERTOG-AI Table Question Answering and Data Analysis App") st.markdown(""" This app allows you to upload a table (CSV or Excel) and ask questions about the data. Based on your question, it will provide the corresponding answer using the **TAPAS** model and additional data processing. ### Available Features: - **mean()**: For "average", it computes the mean of the entire numeric DataFrame. - **sum()**: For "sum", it calculates the sum of all numeric values in the DataFrame. - **max()**: For "max", it computes the maximum value in the DataFrame. - **min()**: For "min", it computes the minimum value in the DataFrame. - **count()**: For "count", it counts the non-null values in the entire DataFrame. You can upload your data and ask questions like "What is the average of column X?" or "What is the sum of column Y?". The app will automatically process the data and give you the relevant answer. """) # File uploader in the sidebar file_name = st.sidebar.file_uploader("Upload file:", type=['csv', 'xlsx']) # File processing and question answering if file_name is None: st.markdown('
Please upload an excel or csv file
', unsafe_allow_html=True) else: try: # Check file type and handle reading accordingly if file_name.name.endswith('.csv'): df = pd.read_csv(file_name, sep=';', encoding='ISO-8859-1') # Adjust encoding if needed elif file_name.name.endswith('.xlsx'): df = pd.read_excel(file_name, engine='openpyxl') # Use openpyxl to read .xlsx files else: st.error("Unsupported file type") df = None if df is not None: numeric_columns = df.select_dtypes(include=['object']).columns for col in numeric_columns: df[col] = pd.to_numeric(df[col], errors='ignore') st.write("Original Data:") st.write(df) df_numeric = df.copy() df = df.astype(str) # Display the first 5 rows of the dataframe in an editable grid grid_response = AgGrid( df.head(5), columns_auto_size_mode='FIT_CONTENTS', editable=True, height=300, width='100%', ) except Exception as e: st.error(f"Error reading file: {str(e)}") # User input for the question question = st.text_input('Type your question') # Process the answer using TAPAS and T5 with st.spinner(): if st.button('Answer'): try: raw_answer = tqa(table=df, query=question, truncation=True) st.markdown("Raw Result From TAPAS:
", unsafe_allow_html=True) st.success(raw_answer) answer = raw_answer['answer'] aggregator = raw_answer.get('aggregator', '') coordinates = raw_answer.get('coordinates', []) cells = raw_answer.get('cells', []) # Check if the answer contains non-numeric values, and filter them out numeric_cells = [] for cell in cells: try: numeric_cells.append(float(cell)) # Convert to float if possible except ValueError: pass # Ignore non-numeric cells # Handle aggregation based on user question or TAPAS output if 'average' in question.lower() or aggregator == 'AVG': if numeric_cells: avg_value = sum(numeric_cells) / len(numeric_cells) # Calculate average base_sentence = f"The average for '{question}' is {avg_value:.2f}." else: base_sentence = f"No numeric data found for calculating the average of '{question}'." elif 'sum' in question.lower() or aggregator == 'SUM': if numeric_cells: total_sum = sum(numeric_cells) # Calculate sum base_sentence = f"The sum for '{question}' is {total_sum:.2f}." else: base_sentence = f"No numeric data found for calculating the sum of '{question}'." elif 'max' in question.lower() or aggregator == 'MAX': if numeric_cells: max_value = max(numeric_cells) # Find max value base_sentence = f"The maximum value for '{question}' is {max_value:.2f}." else: base_sentence = f"No numeric data found for finding the maximum value of '{question}'." elif 'min' in question.lower() or aggregator == 'MIN': if numeric_cells: min_value = min(numeric_cells) # Find min value base_sentence = f"The minimum value for '{question}' is {min_value:.2f}." else: base_sentence = f"No numeric data found for finding the minimum value of '{question}'." elif 'count' in question.lower() or aggregator == 'COUNT': count_value = len(numeric_cells) # Count numeric cells base_sentence = f"The total count of numeric values for '{question}' is {count_value}." else: # Construct a base sentence for other aggregators or no aggregation base_sentence = f"The answer from TAPAS for '{question}' is {answer}." if coordinates and cells: rows_info = [f"Row {coordinate[0] + 1}, Column '{df.columns[coordinate[1]]}' with value {cell}" for coordinate, cell in zip(coordinates, cells)] rows_description = " and ".join(rows_info) base_sentence += f" This includes the following data: {rows_description}." # Generate a fluent response using the T5 model, rephrasing the base sentence input_text = f"Given the question: '{question}', generate a more human-readable response: {base_sentence}" # Tokenize the input and generate a fluent response using T5 inputs = t5_tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True) summary_ids = t5_model.generate(inputs, max_length=150, num_beams=4, early_stopping=True) # Decode the generated text generated_text = t5_tokenizer.decode(summary_ids[0], skip_special_tokens=True) # Display the final generated response st.markdown("Final Generated Response with LLM:
", unsafe_allow_html=True) st.success(generated_text) except Exception as e: st.warning(f"Error processing question or generating answer: {str(e)}") st.warning("Please retype your question and make sure to use the column name and cell value correctly.")