Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,22 @@ import streamlit as st
|
|
3 |
from transformers import TapasForQuestionAnswering, TapasTokenizer, T5ForConditionalGeneration, T5Tokenizer
|
4 |
import torch
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
# Load TAPAS model and tokenizer
|
7 |
tqa_model = TapasForQuestionAnswering.from_pretrained("google/tapas-large-finetuned-wtq")
|
8 |
tqa_tokenizer = TapasTokenizer.from_pretrained("google/tapas-large-finetuned-wtq")
|
@@ -11,9 +27,6 @@ tqa_tokenizer = TapasTokenizer.from_pretrained("google/tapas-large-finetuned-wtq
|
|
11 |
t5_model = T5ForConditionalGeneration.from_pretrained("t5-small")
|
12 |
t5_tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
13 |
|
14 |
-
# Assuming 'df' is the DataFrame you are using and has numeric columns
|
15 |
-
df_numeric = df.select_dtypes(include='number')
|
16 |
-
|
17 |
# User input for the question
|
18 |
question = st.text_input('Type your question')
|
19 |
|
@@ -60,6 +73,10 @@ with st.spinner():
|
|
60 |
st.warning("Please retype your question and make sure to use the column name and cell value correctly.")
|
61 |
|
62 |
|
|
|
|
|
|
|
|
|
63 |
# Manually fix the aggregator if it returns an incorrect one
|
64 |
if 'MEDIAN' in question.upper() and 'AVERAGE' in aggregator.upper():
|
65 |
aggregator = 'MEDIAN'
|
|
|
3 |
from transformers import TapasForQuestionAnswering, TapasTokenizer, T5ForConditionalGeneration, T5Tokenizer
|
4 |
import torch
|
5 |
|
6 |
+
# Assuming df is uploaded or pre-defined (you can replace with actual data loading logic)
|
7 |
+
# Example DataFrame (replace with your actual file or data)
|
8 |
+
data = {
|
9 |
+
'Column1': [1, 2, 3, 4],
|
10 |
+
'Column2': [5.5, 6.5, 7.5, 8.5],
|
11 |
+
'Column3': ['a', 'b', 'c', 'd']
|
12 |
+
}
|
13 |
+
df = pd.DataFrame(data)
|
14 |
+
|
15 |
+
# Check if DataFrame is valid
|
16 |
+
if df is not None and not df.empty:
|
17 |
+
# Select numeric columns
|
18 |
+
df_numeric = df.select_dtypes(include='number')
|
19 |
+
else:
|
20 |
+
df_numeric = pd.DataFrame() # Empty DataFrame if input is invalid
|
21 |
+
|
22 |
# Load TAPAS model and tokenizer
|
23 |
tqa_model = TapasForQuestionAnswering.from_pretrained("google/tapas-large-finetuned-wtq")
|
24 |
tqa_tokenizer = TapasTokenizer.from_pretrained("google/tapas-large-finetuned-wtq")
|
|
|
27 |
t5_model = T5ForConditionalGeneration.from_pretrained("t5-small")
|
28 |
t5_tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
29 |
|
|
|
|
|
|
|
30 |
# User input for the question
|
31 |
question = st.text_input('Type your question')
|
32 |
|
|
|
73 |
st.warning("Please retype your question and make sure to use the column name and cell value correctly.")
|
74 |
|
75 |
|
76 |
+
# Assuming 'column_name' exists and is selected or provided by the user
|
77 |
+
# Example of getting 'column_name' from user input (adjust this part according to your app):
|
78 |
+
column_name = st.selectbox("Select a column", df.columns)
|
79 |
+
|
80 |
# Manually fix the aggregator if it returns an incorrect one
|
81 |
if 'MEDIAN' in question.upper() and 'AVERAGE' in aggregator.upper():
|
82 |
aggregator = 'MEDIAN'
|