#!/usr/bin/env python import os from collections.abc import Iterator from threading import Thread import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer DESCRIPTION = "# rinna/deepseek-r1-distill-qwen2.5-bakeneko-32b-awq" MAX_MAX_NEW_TOKENS = 4096 DEFAULT_MAX_NEW_TOKENS = 4096 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_id = "rinna/deepseek-r1-distill-qwen2.5-bakeneko-32b-awq" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, ) model.eval() @spaces.GPU(duration=120) def generate( message: str, chat_history: list[dict], max_new_tokens: int = 4096, temperature: float = 0.6, top_p: float = 0.95, ) -> Iterator[str]: messages = [*chat_history, {"role": "user", "content": message}] input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=30.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, temperature=temperature, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) demo = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.95, ), ], stop_btn=None, examples=[ ["微分に関する簡単な文章問題を作成し、その問題を解いてください。"], ], cache_examples=False, type="messages", description=DESCRIPTION, css_paths="style.css", fill_height=True, chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["think"]), ) if __name__ == "__main__": demo.launch()