aliabd HF staff commited on
Commit
e0666ad
·
1 Parent(s): 97e1d50

Upload with huggingface_hub

Browse files
Files changed (4) hide show
  1. README.md +5 -6
  2. requirements.txt +3 -0
  3. run.ipynb +1 -0
  4. run.py +140 -0
README.md CHANGED
@@ -1,12 +1,11 @@
 
1
  ---
2
- title: Altair Plot Main
3
  emoji: 🔥
4
- colorFrom: purple
5
- colorTo: red
6
  sdk: gradio
7
  sdk_version: 3.12.0
8
- app_file: app.py
9
  pinned: false
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+
2
  ---
3
+ title: altair_plot_main
4
  emoji: 🔥
5
+ colorFrom: indigo
6
+ colorTo: indigo
7
  sdk: gradio
8
  sdk_version: 3.12.0
9
+ app_file: run.py
10
  pinned: false
11
  ---
 
 
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ altair
2
+ vega_datasets
3
+ https://gradio-main-build.s3.amazonaws.com/bed288a509ebd0edd56f812bc14fd947084e0933/gradio-3.12.0-py3-none-any.whl
run.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: altair_plot"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio altair vega_datasets"]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import altair as alt\n", "import gradio as gr\n", "import numpy as np\n", "import pandas as pd\n", "from vega_datasets import data\n", "\n", "\n", "def make_plot(plot_type):\n", " if plot_type == \"scatter_plot\":\n", " cars = data.cars()\n", " return alt.Chart(cars).mark_point().encode(\n", " x='Horsepower',\n", " y='Miles_per_Gallon',\n", " color='Origin',\n", " )\n", " elif plot_type == \"heatmap\":\n", " # Compute x^2 + y^2 across a 2D grid\n", " x, y = np.meshgrid(range(-5, 5), range(-5, 5))\n", " z = x ** 2 + y ** 2\n", "\n", " # Convert this grid to columnar data expected by Altair\n", " source = pd.DataFrame({'x': x.ravel(),\n", " 'y': y.ravel(),\n", " 'z': z.ravel()})\n", " return alt.Chart(source).mark_rect().encode(\n", " x='x:O',\n", " y='y:O',\n", " color='z:Q'\n", " )\n", " elif plot_type == \"us_map\":\n", " states = alt.topo_feature(data.us_10m.url, 'states')\n", " source = data.income.url\n", "\n", " return alt.Chart(source).mark_geoshape().encode(\n", " shape='geo:G',\n", " color='pct:Q',\n", " tooltip=['name:N', 'pct:Q'],\n", " facet=alt.Facet('group:N', columns=2),\n", " ).transform_lookup(\n", " lookup='id',\n", " from_=alt.LookupData(data=states, key='id'),\n", " as_='geo'\n", " ).properties(\n", " width=300,\n", " height=175,\n", " ).project(\n", " type='albersUsa'\n", " )\n", " elif plot_type == \"interactive_barplot\":\n", " source = data.movies.url\n", "\n", " pts = alt.selection(type=\"single\", encodings=['x'])\n", "\n", " rect = alt.Chart(data.movies.url).mark_rect().encode(\n", " alt.X('IMDB_Rating:Q', bin=True),\n", " alt.Y('Rotten_Tomatoes_Rating:Q', bin=True),\n", " alt.Color('count()',\n", " scale=alt.Scale(scheme='greenblue'),\n", " legend=alt.Legend(title='Total Records')\n", " )\n", " )\n", "\n", " circ = rect.mark_point().encode(\n", " alt.ColorValue('grey'),\n", " alt.Size('count()',\n", " legend=alt.Legend(title='Records in Selection')\n", " )\n", " ).transform_filter(\n", " pts\n", " )\n", "\n", " bar = alt.Chart(source).mark_bar().encode(\n", " x='Major_Genre:N',\n", " y='count()',\n", " color=alt.condition(pts, alt.ColorValue(\"steelblue\"), alt.ColorValue(\"grey\"))\n", " ).properties(\n", " width=550,\n", " height=200\n", " ).add_selection(pts)\n", "\n", " plot = alt.vconcat(\n", " rect + circ,\n", " bar\n", " ).resolve_legend(\n", " color=\"independent\",\n", " size=\"independent\"\n", " )\n", " return plot\n", " elif plot_type == \"radial\":\n", " source = pd.DataFrame({\"values\": [12, 23, 47, 6, 52, 19]})\n", "\n", " base = alt.Chart(source).encode(\n", " theta=alt.Theta(\"values:Q\", stack=True),\n", " radius=alt.Radius(\"values\", scale=alt.Scale(type=\"sqrt\", zero=True, rangeMin=20)),\n", " color=\"values:N\",\n", " )\n", "\n", " c1 = base.mark_arc(innerRadius=20, stroke=\"#fff\")\n", "\n", " c2 = base.mark_text(radiusOffset=10).encode(text=\"values:Q\")\n", "\n", " return c1 + c2\n", " elif plot_type == \"multiline\":\n", " source = data.stocks()\n", "\n", " highlight = alt.selection(type='single', on='mouseover',\n", " fields=['symbol'], nearest=True)\n", "\n", " base = alt.Chart(source).encode(\n", " x='date:T',\n", " y='price:Q',\n", " color='symbol:N'\n", " )\n", "\n", " points = base.mark_circle().encode(\n", " opacity=alt.value(0)\n", " ).add_selection(\n", " highlight\n", " ).properties(\n", " width=600\n", " )\n", "\n", " lines = base.mark_line().encode(\n", " size=alt.condition(~highlight, alt.value(1), alt.value(3))\n", " )\n", "\n", " return points + lines\n", "\n", "\n", "with gr.Blocks() as demo:\n", " button = gr.Radio(label=\"Plot type\",\n", " choices=['scatter_plot', 'heatmap', 'us_map',\n", " 'interactive_barplot', \"radial\", \"multiline\"], value='scatter_plot')\n", " plot = gr.Plot(label=\"Plot\")\n", " button.change(make_plot, inputs=button, outputs=[plot])\n", " demo.load(make_plot, inputs=[button], outputs=[plot])\n", "\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
run.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import altair as alt
2
+ import gradio as gr
3
+ import numpy as np
4
+ import pandas as pd
5
+ from vega_datasets import data
6
+
7
+
8
+ def make_plot(plot_type):
9
+ if plot_type == "scatter_plot":
10
+ cars = data.cars()
11
+ return alt.Chart(cars).mark_point().encode(
12
+ x='Horsepower',
13
+ y='Miles_per_Gallon',
14
+ color='Origin',
15
+ )
16
+ elif plot_type == "heatmap":
17
+ # Compute x^2 + y^2 across a 2D grid
18
+ x, y = np.meshgrid(range(-5, 5), range(-5, 5))
19
+ z = x ** 2 + y ** 2
20
+
21
+ # Convert this grid to columnar data expected by Altair
22
+ source = pd.DataFrame({'x': x.ravel(),
23
+ 'y': y.ravel(),
24
+ 'z': z.ravel()})
25
+ return alt.Chart(source).mark_rect().encode(
26
+ x='x:O',
27
+ y='y:O',
28
+ color='z:Q'
29
+ )
30
+ elif plot_type == "us_map":
31
+ states = alt.topo_feature(data.us_10m.url, 'states')
32
+ source = data.income.url
33
+
34
+ return alt.Chart(source).mark_geoshape().encode(
35
+ shape='geo:G',
36
+ color='pct:Q',
37
+ tooltip=['name:N', 'pct:Q'],
38
+ facet=alt.Facet('group:N', columns=2),
39
+ ).transform_lookup(
40
+ lookup='id',
41
+ from_=alt.LookupData(data=states, key='id'),
42
+ as_='geo'
43
+ ).properties(
44
+ width=300,
45
+ height=175,
46
+ ).project(
47
+ type='albersUsa'
48
+ )
49
+ elif plot_type == "interactive_barplot":
50
+ source = data.movies.url
51
+
52
+ pts = alt.selection(type="single", encodings=['x'])
53
+
54
+ rect = alt.Chart(data.movies.url).mark_rect().encode(
55
+ alt.X('IMDB_Rating:Q', bin=True),
56
+ alt.Y('Rotten_Tomatoes_Rating:Q', bin=True),
57
+ alt.Color('count()',
58
+ scale=alt.Scale(scheme='greenblue'),
59
+ legend=alt.Legend(title='Total Records')
60
+ )
61
+ )
62
+
63
+ circ = rect.mark_point().encode(
64
+ alt.ColorValue('grey'),
65
+ alt.Size('count()',
66
+ legend=alt.Legend(title='Records in Selection')
67
+ )
68
+ ).transform_filter(
69
+ pts
70
+ )
71
+
72
+ bar = alt.Chart(source).mark_bar().encode(
73
+ x='Major_Genre:N',
74
+ y='count()',
75
+ color=alt.condition(pts, alt.ColorValue("steelblue"), alt.ColorValue("grey"))
76
+ ).properties(
77
+ width=550,
78
+ height=200
79
+ ).add_selection(pts)
80
+
81
+ plot = alt.vconcat(
82
+ rect + circ,
83
+ bar
84
+ ).resolve_legend(
85
+ color="independent",
86
+ size="independent"
87
+ )
88
+ return plot
89
+ elif plot_type == "radial":
90
+ source = pd.DataFrame({"values": [12, 23, 47, 6, 52, 19]})
91
+
92
+ base = alt.Chart(source).encode(
93
+ theta=alt.Theta("values:Q", stack=True),
94
+ radius=alt.Radius("values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)),
95
+ color="values:N",
96
+ )
97
+
98
+ c1 = base.mark_arc(innerRadius=20, stroke="#fff")
99
+
100
+ c2 = base.mark_text(radiusOffset=10).encode(text="values:Q")
101
+
102
+ return c1 + c2
103
+ elif plot_type == "multiline":
104
+ source = data.stocks()
105
+
106
+ highlight = alt.selection(type='single', on='mouseover',
107
+ fields=['symbol'], nearest=True)
108
+
109
+ base = alt.Chart(source).encode(
110
+ x='date:T',
111
+ y='price:Q',
112
+ color='symbol:N'
113
+ )
114
+
115
+ points = base.mark_circle().encode(
116
+ opacity=alt.value(0)
117
+ ).add_selection(
118
+ highlight
119
+ ).properties(
120
+ width=600
121
+ )
122
+
123
+ lines = base.mark_line().encode(
124
+ size=alt.condition(~highlight, alt.value(1), alt.value(3))
125
+ )
126
+
127
+ return points + lines
128
+
129
+
130
+ with gr.Blocks() as demo:
131
+ button = gr.Radio(label="Plot type",
132
+ choices=['scatter_plot', 'heatmap', 'us_map',
133
+ 'interactive_barplot', "radial", "multiline"], value='scatter_plot')
134
+ plot = gr.Plot(label="Plot")
135
+ button.change(make_plot, inputs=button, outputs=[plot])
136
+ demo.load(make_plot, inputs=[button], outputs=[plot])
137
+
138
+
139
+ if __name__ == "__main__":
140
+ demo.launch()