Spaces:
Running
Running
File size: 6,783 Bytes
adab805 c39f76f adab805 c39f76f 0311973 99158b8 78a0b1f 0311973 612fc4e 1b43778 c39f76f 612fc4e 7bd5b91 c39f76f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
title: README
emoji: π
colorFrom: pink
colorTo: red
sdk: static
pinned: false
---
![Hugging Face x Google Cloud](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/google-cloud/thumbnail.png)
*Welcome to the official Google organization on Hugging Face\!*
[Google collaborates with Hugging Face](https://huggingface.co/blog/gcp-partnership) across open science, open source, cloud, and hardware to **enable companies to innovate with AI** [on Google Cloud AI services and infrastructure with the Hugging Face ecosystem](https://huggingface.co/docs/google-cloud/main/en/index).
## Featured Models and Tools
* **Gemma Family of Open Multimodal Models**
* **Gemma** is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models
* **PaliGemma** is a versatile and lightweight vision-language model (VLM)
* **CodeGemma** is a collection of lightweight open code models built on top of Gemma
* **RecurrentGemma** is a family of open language models built on a novel recurrent architecture developed at Google
* **ShieldGemma** is a series of safety content moderation models built upon Gemma 2 that target four harm categories
* [**Health AI Developer Foundations**](https://developers.google.com/health-ai-developer-foundations)
* [**CXR Foundation**](https://huggingface.co/google/cxr-foundation) embedding model for efficiently building AI for chest X-ray applications
* [**Path Foundation**](https://huggingface.co/google/path-foundation) embedding model for efficiently building AI for histopathology applications
* [**Derm Foundation**](https://huggingface.co/google/derm-foundation) embedding model for efficiently building AI for skin imaging applications
* **[**BERT**](https://huggingface.co/collections/google/bert-release-64ff5e7a4be99045d1896dbc), [**T5**](https://huggingface.co/collections/google/t5-release-65005e7c520f8d7b4d037918), and [**TimesFM**](https://github.com/google-research/timesfm) Model Families**
* **Author ML models with [**MaxText**](https://github.com/google/maxtext), [**JAX**](https://github.com/google/jax), [**Keras**](https://github.com/keras-team/keras), [**Tensorflow**](https://github.com/tensorflow/tensorflow), and [**PyTorch/XLA**](https://github.com/pytorch/xla)**
* **[**SynthID**](https://deepmind.google/technologies/synthid/)** is a Google DeepMind technology that watermarks and identifies AI-generated content ([π€ Space](https://huggingface.co/spaces/google/synthid-text))
## Open Research and Community Resources
* **Google Blogs**:
* [https://blog.google/](https://blog.google/)
* [https://cloud.google.com/blog/](https://cloud.google.com/blog/)
* [https://deepmind.google/discover/blog/](https://deepmind.google/discover/blog/)
* [https://developers.google.com/learn?category=aiandmachinelearning](https://developers.google.com/learn?category=aiandmachinelearning)
* **Notable GitHub Repositories**:
* [https://github.com/google/jax](https://github.com/google/jax) is a Python library for high-performance numerical computing and machine learning
* [https://github.com/huggingface/Google-Cloud-Containers](https://github.com/huggingface/Google-Cloud-Containers) facilitate the training and deployment of Hugging Face models on Google Cloud
* [https://github.com/pytorch/xla](https://github.com/pytorch/xla) enables PyTorch on XLA Devices (e.g. Google TPU)
* [https://github.com/huggingface/optimum-tpu](https://github.com/huggingface/optimum-tpu) brings the power of TPUs to your training and inference stack
* [https://github.com/openxla/xla](https://github.com/openxla/xla) is a machine learning compiler for GPUs, CPUs, and ML accelerators
* [https://github.com/google/JetStream](https://github.com/google/JetStream) (and [https://github.com/google/jetstream-pytorch](https://github.com/google/jetstream-pytorch)) is a throughput and memory optimized engine for large language model (LLM) inference on XLA devices
* [https://github.com/google/flax](https://github.com/google/flax) is a neural network library for JAX that is designed for flexibility
* [https://github.com/kubernetes-sigs/lws](https://github.com/kubernetes-sigs/lws) facilitates Kubernetes deployment patterns for AI/ML inference workloads, especially multi-host inference workloads
* [https://github.com/GoogleCloudPlatform/ai-on-gke](https://github.com/GoogleCloudPlatform/ai-on-gke) is a collection of AI examples, best-practices, and prebuilt solutions
* **Google AI Research Papers**: [https://research.google/](https://research.google/)
## On-device ML using [Google AI Edge](http://ai.google.dev/edge)
* Customize and run common ML Tasks with low-code [MediaPipe Solutions](https://ai.google.dev/edge/mediapipe/solutions/guide)
* Run [pretrained](https://ai.google.dev/edge/litert/models/trained) or custom models on-device with [Lite RT (previously known as TensorFlow Lite)](https://ai.google.dev/edge/lite)
* Convert [TensorFlow](https://ai.google.dev/edge/lite/models/convert_tf) and [JAX](https://ai.google.dev/edge/lite/models/convert_jax) models to LiteRT
* Convert PyTorch models to LiteRT and author high performance on-device LLMs with [AI Edge Torch](https://github.com/google-ai-edge/ai-edge-torch)
* Visualize and debug models with [Model Explorer](https://ai.google.dev/edge/model-explorer) ([π€ Space](https://huggingface.co/spaces/google/model-explorer))
## Partnership Highlights and Resources
* Select Google Cloud CPU, GPU, or TPU options when setting up your **Hugging Face [**Inference Endpoints**](https://huggingface.co/blog/tpu-inference-endpoints-spaces) and Spaces**
* **Train and Deploy Hugging Face models** on Google Kubernetes Engine (GKE) and Vertex AI **directly from Hugging Face model landing pages or from Google Cloud Model Garden**
* **Integrate [**Colab**](https://colab.research.google.com/) notebooks with Hugging Face Hub** via the [HF\_TOKEN secret manager integration](https://huggingface.co/docs/huggingface_hub/v0.23.3/en/quick-start#environment-variable) and transformers/huggingface\_hub pre-installs
* Leverage [**Hugging Face Deep Learning Containers (DLCs)**](https://cloud.google.com/deep-learning-containers/docs/choosing-container#hugging-face) for easy training and deployment of Hugging Face models on Google Cloud infrastructure
* Run optimized, zero-configuration inference microservices with [**Hugging Face Generative AI Services (HUGS) via the Google Cloud Marketplace**](https://huggingface.co/docs/hugs/how-to/cloud/gcp)
Read about our principles for responsible AI at [https://ai.google/responsibility/principles](https://ai.google/responsibility/principles/) |