import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModel def forward_process(batch, prompt_index, mask_id): b, l = batch.shape target_len = (l - prompt_index.sum()).item() k = torch.randint(1, target_len + 1, (), device=batch.device) x = torch.round(torch.linspace(float(k), k + (b - 1) * (target_len / b), steps=b, device=batch.device)).long() x = ((x - 1) % target_len) + 1 assert x.min() >= 1 and x.max() <= target_len indices = torch.arange(target_len, device=batch.device).repeat(b, 1) is_mask = indices < x.unsqueeze(1) for i in range(b): is_mask[i] = is_mask[i][torch.randperm(target_len)] is_mask = torch.cat((torch.zeros(b, prompt_index.sum(), dtype=torch.bool, device=batch.device), is_mask), dim=1) noisy_batch = torch.where(is_mask, mask_id, batch) # Return the masked batch and the mask ratio return noisy_batch, (x / target_len).unsqueeze(1).repeat(1, l) def get_logits(model, batch, prompt_index, cfg_scale, mask_id): if cfg_scale > 0.: assert len(prompt_index) == batch.shape[1] prompt_index = prompt_index.unsqueeze(0).repeat(batch.shape[0], 1) un_batch = batch.clone() un_batch[prompt_index] = mask_id batch = torch.cat([batch, un_batch]) input = batch logits = model(input).logits if cfg_scale > 0.: logits, un_logits = torch.chunk(logits, 2, dim=0) logits = un_logits + (cfg_scale + 1) * (logits - un_logits) return logits @ torch.no_grad() def get_log_likelihood(model, prompt, answer, mc_num=128, batch_size=16, cfg_scale=0., mask_id=126336): ''' Args: model: Mask predictor. prompt: A tensor of shape (l1). answer: A tensor of shape (l2). mc_num: Monte Carlo estimation times. As detailed in Appendix B.5. Since MMLU, CMMLU, and C-EVAL only require the likelihood of a single token, a single Monte Carlo estimate is sufficient for these benchmarks. For all other benchmarks, we find that 128 Monte Carlo samples are adequate to produce stable results. batch_size: Mini batch size. cfg_scale: Unsupervised classifier-free guidance scale. mask_id: The toke id of [MASK] is 126336. ''' seq = torch.concatenate([prompt, answer])[None, :] seq = seq.repeat((batch_size, 1)).to(model.device) prompt_index = torch.arange(seq.shape[1], device=model.device) < len(prompt) loss_ = [] for _ in range(mc_num // batch_size): perturbed_seq, p_mask = forward_process(seq, prompt_index, mask_id) mask_index = perturbed_seq == mask_id logits = get_logits(model, perturbed_seq, prompt_index, cfg_scale, mask_id) loss = F.cross_entropy(logits[mask_index], seq[mask_index], reduction='none') / p_mask[mask_index] loss = loss.sum() / batch_size loss_.append(loss.item()) return - sum(loss_) / len(loss_) def main(): device = 'cuda' model = AutoModel.from_pretrained('GSAI-ML/LLaDA-8B-Base', trust_remote_code=True, torch_dtype=torch.bfloat16).to(device).eval() tokenizer = AutoTokenizer.from_pretrained('GSAI-ML/LLaDA-8B-Base', trust_remote_code=True) # this prompt and answer is from Hellaswag dataset prompt = 'Roof shingle removal: A man is sitting on a roof. He' answer = ' is using wrap to wrap a pair of skis.' prompt = torch.tensor(tokenizer(prompt)['input_ids']).to(device) answer = torch.tensor(tokenizer(answer)['input_ids']).to(device) print(get_log_likelihood(model, prompt, answer, mc_num=128)) if __name__ == '__main__': main()