|
import torch |
|
import torch.nn.functional as F |
|
|
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
|
|
def forward_process(batch, prompt_index, mask_id): |
|
b, l = batch.shape |
|
|
|
target_len = (l - prompt_index.sum()).item() |
|
k = torch.randint(1, target_len + 1, (), device=batch.device) |
|
|
|
x = torch.round(torch.linspace(float(k), k + (b - 1) * (target_len / b), steps=b, device=batch.device)).long() |
|
x = ((x - 1) % target_len) + 1 |
|
assert x.min() >= 1 and x.max() <= target_len |
|
|
|
indices = torch.arange(target_len, device=batch.device).repeat(b, 1) |
|
is_mask = indices < x.unsqueeze(1) |
|
for i in range(b): |
|
is_mask[i] = is_mask[i][torch.randperm(target_len)] |
|
|
|
is_mask = torch.cat((torch.zeros(b, prompt_index.sum(), dtype=torch.bool, device=batch.device), is_mask), dim=1) |
|
noisy_batch = torch.where(is_mask, mask_id, batch) |
|
|
|
|
|
return noisy_batch, (x / target_len).unsqueeze(1).repeat(1, l) |
|
|
|
|
|
def get_logits(model, batch, prompt_index, cfg_scale, mask_id): |
|
if cfg_scale > 0.: |
|
assert len(prompt_index) == batch.shape[1] |
|
prompt_index = prompt_index.unsqueeze(0).repeat(batch.shape[0], 1) |
|
un_batch = batch.clone() |
|
un_batch[prompt_index] = mask_id |
|
batch = torch.cat([batch, un_batch]) |
|
|
|
input = batch |
|
logits = model(input).logits |
|
|
|
if cfg_scale > 0.: |
|
logits, un_logits = torch.chunk(logits, 2, dim=0) |
|
logits = un_logits + (cfg_scale + 1) * (logits - un_logits) |
|
return logits |
|
|
|
|
|
@ torch.no_grad() |
|
def get_log_likelihood(model, prompt, answer, mc_num=128, batch_size=16, cfg_scale=0., mask_id=126336): |
|
''' |
|
Args: |
|
model: Mask predictor. |
|
prompt: A tensor of shape (l1). |
|
answer: A tensor of shape (l2). |
|
mc_num: Monte Carlo estimation times. |
|
As detailed in Appendix B.5. Since MMLU, CMMLU, and C-EVAL only require the likelihood of a single token, a |
|
single Monte Carlo estimate is sufficient for these benchmarks. For all other benchmarks, we find that 128 |
|
Monte Carlo samples are adequate to produce stable results. |
|
batch_size: Mini batch size. |
|
cfg_scale: Unsupervised classifier-free guidance scale. |
|
mask_id: The toke id of [MASK] is 126336. |
|
''' |
|
seq = torch.concatenate([prompt, answer])[None, :] |
|
seq = seq.repeat((batch_size, 1)).to(model.device) |
|
prompt_index = torch.arange(seq.shape[1], device=model.device) < len(prompt) |
|
|
|
loss_ = [] |
|
for _ in range(mc_num // batch_size): |
|
perturbed_seq, p_mask = forward_process(seq, prompt_index, mask_id) |
|
mask_index = perturbed_seq == mask_id |
|
|
|
logits = get_logits(model, perturbed_seq, prompt_index, cfg_scale, mask_id) |
|
|
|
loss = F.cross_entropy(logits[mask_index], seq[mask_index], reduction='none') / p_mask[mask_index] |
|
loss = loss.sum() / batch_size |
|
|
|
loss_.append(loss.item()) |
|
|
|
return - sum(loss_) / len(loss_) |
|
|
|
|
|
def main(): |
|
device = 'cuda' |
|
|
|
model = AutoModel.from_pretrained('GSAI-ML/LLaDA-8B-Base', trust_remote_code=True, torch_dtype=torch.bfloat16).to(device).eval() |
|
tokenizer = AutoTokenizer.from_pretrained('GSAI-ML/LLaDA-8B-Base', trust_remote_code=True) |
|
|
|
|
|
prompt = 'Roof shingle removal: A man is sitting on a roof. He' |
|
answer = ' is using wrap to wrap a pair of skis.' |
|
|
|
prompt = torch.tensor(tokenizer(prompt)['input_ids']).to(device) |
|
answer = torch.tensor(tokenizer(answer)['input_ids']).to(device) |
|
print(get_log_likelihood(model, prompt, answer, mc_num=128)) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |