LLaDA / get_log_likelihood.py
multimodalart's picture
Upload 11 files
f6d8cac verified
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
def forward_process(batch, prompt_index, mask_id):
b, l = batch.shape
target_len = (l - prompt_index.sum()).item()
k = torch.randint(1, target_len + 1, (), device=batch.device)
x = torch.round(torch.linspace(float(k), k + (b - 1) * (target_len / b), steps=b, device=batch.device)).long()
x = ((x - 1) % target_len) + 1
assert x.min() >= 1 and x.max() <= target_len
indices = torch.arange(target_len, device=batch.device).repeat(b, 1)
is_mask = indices < x.unsqueeze(1)
for i in range(b):
is_mask[i] = is_mask[i][torch.randperm(target_len)]
is_mask = torch.cat((torch.zeros(b, prompt_index.sum(), dtype=torch.bool, device=batch.device), is_mask), dim=1)
noisy_batch = torch.where(is_mask, mask_id, batch)
# Return the masked batch and the mask ratio
return noisy_batch, (x / target_len).unsqueeze(1).repeat(1, l)
def get_logits(model, batch, prompt_index, cfg_scale, mask_id):
if cfg_scale > 0.:
assert len(prompt_index) == batch.shape[1]
prompt_index = prompt_index.unsqueeze(0).repeat(batch.shape[0], 1)
un_batch = batch.clone()
un_batch[prompt_index] = mask_id
batch = torch.cat([batch, un_batch])
input = batch
logits = model(input).logits
if cfg_scale > 0.:
logits, un_logits = torch.chunk(logits, 2, dim=0)
logits = un_logits + (cfg_scale + 1) * (logits - un_logits)
return logits
@ torch.no_grad()
def get_log_likelihood(model, prompt, answer, mc_num=128, batch_size=16, cfg_scale=0., mask_id=126336):
'''
Args:
model: Mask predictor.
prompt: A tensor of shape (l1).
answer: A tensor of shape (l2).
mc_num: Monte Carlo estimation times.
As detailed in Appendix B.5. Since MMLU, CMMLU, and C-EVAL only require the likelihood of a single token, a
single Monte Carlo estimate is sufficient for these benchmarks. For all other benchmarks, we find that 128
Monte Carlo samples are adequate to produce stable results.
batch_size: Mini batch size.
cfg_scale: Unsupervised classifier-free guidance scale.
mask_id: The toke id of [MASK] is 126336.
'''
seq = torch.concatenate([prompt, answer])[None, :]
seq = seq.repeat((batch_size, 1)).to(model.device)
prompt_index = torch.arange(seq.shape[1], device=model.device) < len(prompt)
loss_ = []
for _ in range(mc_num // batch_size):
perturbed_seq, p_mask = forward_process(seq, prompt_index, mask_id)
mask_index = perturbed_seq == mask_id
logits = get_logits(model, perturbed_seq, prompt_index, cfg_scale, mask_id)
loss = F.cross_entropy(logits[mask_index], seq[mask_index], reduction='none') / p_mask[mask_index]
loss = loss.sum() / batch_size
loss_.append(loss.item())
return - sum(loss_) / len(loss_)
def main():
device = 'cuda'
model = AutoModel.from_pretrained('GSAI-ML/LLaDA-8B-Base', trust_remote_code=True, torch_dtype=torch.bfloat16).to(device).eval()
tokenizer = AutoTokenizer.from_pretrained('GSAI-ML/LLaDA-8B-Base', trust_remote_code=True)
# this prompt and answer is from Hellaswag dataset
prompt = 'Roof shingle removal: A man is sitting on a roof. He'
answer = ' is using wrap to wrap a pair of skis.'
prompt = torch.tensor(tokenizer(prompt)['input_ids']).to(device)
answer = torch.tensor(tokenizer(answer)['input_ids']).to(device)
print(get_log_likelihood(model, prompt, answer, mc_num=128))
if __name__ == '__main__':
main()