|
import torch |
|
|
|
from generate import generate |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
|
|
def chat(): |
|
device = 'cuda' |
|
model = AutoModel.from_pretrained('GSAI-ML/LLaDA-8B-Instruct', trust_remote_code=True, torch_dtype=torch.bfloat16).to(device).eval() |
|
tokenizer = AutoTokenizer.from_pretrained('GSAI-ML/LLaDA-8B-Instruct', trust_remote_code=True) |
|
|
|
gen_length = 128 |
|
steps = 128 |
|
print('*' * 66) |
|
print(f'** Answer Length: {gen_length} | Sampling Steps: {steps} **') |
|
print('*' * 66) |
|
|
|
conversation_num = 0 |
|
while True: |
|
user_input = input("Enter your question: ") |
|
|
|
m = [{"role": "user", "content": user_input}] |
|
user_input = tokenizer.apply_chat_template(m, add_generation_prompt=True, tokenize=False) |
|
input_ids = tokenizer(user_input)['input_ids'] |
|
input_ids = torch.tensor(input_ids).to(device).unsqueeze(0) |
|
|
|
if conversation_num == 0: |
|
prompt = input_ids |
|
else: |
|
prompt = torch.cat([prompt, input_ids[:, 1:]], dim=1) |
|
|
|
out = generate(model, prompt, steps=steps, gen_length=gen_length, block_length=32, temperature=0., cfg_scale=0., remasking='low_confidence') |
|
|
|
answer = tokenizer.batch_decode(out[:, prompt.shape[1]:], skip_special_tokens=True)[0] |
|
print(f"Bot's reply: {answer}") |
|
|
|
|
|
prompt = out[out != 126081].unsqueeze(0) |
|
conversation_num += 1 |
|
print('-----------------------------------------------------------------------') |
|
|
|
|
|
if __name__ == "__main__": |
|
chat() |
|
|
|
|