LLaDA / app.py
multimodalart's picture
Update app.py
691f73d verified
raw
history blame
15.7 kB
import torch
import numpy as np
import gradio as gr
import spaces
from transformers import AutoTokenizer, AutoModel
import time
import re
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('GSAI-ML/LLaDA-8B-Instruct', trust_remote_code=True)
model = AutoModel.from_pretrained('GSAI-ML/LLaDA-8B-Instruct', trust_remote_code=True,
torch_dtype=torch.bfloat16).to(device)
# Constants
MASK_TOKEN = "[MASK]"
MASK_ID = 126336 # The token ID of [MASK] in LLaDA
def parse_constraints(constraints_text):
"""Parse constraints in format: 'position:word, position:word, ...'"""
constraints = {}
if not constraints_text:
return constraints
parts = constraints_text.split(',')
for part in parts:
if ':' not in part:
continue
pos_str, word = part.split(':', 1)
try:
pos = int(pos_str.strip())
word = word.strip()
if word and pos >= 0:
constraints[pos] = word
except ValueError:
continue
return constraints
def format_chat_history(history):
"""
Format chat history for the LLaDA model
Args:
history: List of [user_message, assistant_message] pairs
Returns:
Formatted conversation for the model
"""
messages = []
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
if assistant_msg: # Skip if None (for the latest user message)
messages.append({"role": "assistant", "content": assistant_msg})
return messages
@spaces.GPU
def generate_response_with_visualization(model, tokenizer, device, messages, gen_length=64, steps=32, constraints=None):
"""
Generate text with LLaDA model with visualization of the denoising process
Args:
messages: List of message dictionaries with 'role' and 'content'
Returns:
List of visualization states showing the progression and final text
"""
# Process constraints
if constraints is None:
constraints = {}
# Convert any string constraints to token IDs
processed_constraints = {}
for pos, word in constraints.items():
tokens = tokenizer.encode(" " + word, add_special_tokens=False)
for i, token_id in enumerate(tokens):
processed_constraints[pos + i] = token_id
# Prepare the prompt using chat template
chat_input = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
input_ids = tokenizer(chat_input)['input_ids']
input_ids = torch.tensor(input_ids).to(device).unsqueeze(0)
# For generation
prompt_length = input_ids.shape[1]
# Initialize the sequence with masks for the response part
x = torch.full((1, prompt_length + gen_length), MASK_ID, dtype=torch.long).to(device)
x[:, :prompt_length] = input_ids.clone()
# Initialize visualization states for just the response part
visualization_states = []
# Add initial state (all masked) - only for the response part
initial_state = [(MASK_TOKEN, "#444444") for _ in range(gen_length)]
visualization_states.append(initial_state)
# Apply constraints to the initial state
for pos, token_id in processed_constraints.items():
absolute_pos = prompt_length + pos
if absolute_pos < x.shape[1]:
x[:, absolute_pos] = token_id
# Calculate timesteps
timesteps = torch.linspace(1.0, 0.0, steps + 1)[:-1]
# Keep track of already revealed tokens
revealed_tokens = torch.zeros(1, gen_length, dtype=torch.bool).to(device)
for step, t in enumerate(timesteps):
# Current t to next t
s = t - 1.0 / steps if step < steps - 1 else 0
# Get all mask positions in the current sequence
mask_indices = (x == MASK_ID)
# Skip if no masks
if not mask_indices.any():
break
# Get logits from the model
logits = model(x).logits
# Get the top predictions
x0 = torch.argmax(logits, dim=-1)
# Get probabilities for visualization
probs = torch.softmax(logits, dim=-1)
top_probs = torch.max(probs, dim=-1)[0]
# Apply the predictions where we have masks
x_old = x.clone()
x = torch.where(mask_indices, x0, x)
# Calculate how many tokens should remain masked at next step
total_len = gen_length
current_t_value = float(t)
next_t_value = float(s)
# Linear schedule: t=1 → all masked, t=0 → none masked
current_masks_expected = int(current_t_value * total_len)
next_masks_expected = int(next_t_value * total_len)
# How many to unmask in this step
tokens_to_unmask = current_masks_expected - next_masks_expected
if tokens_to_unmask > 0 and mask_indices.any():
# Get confidence scores for currently masked tokens
confidence_scores = top_probs[mask_indices]
# Sort confidence scores
sorted_indices = torch.argsort(confidence_scores, descending=True)
# Select which tokens to keep masked (the lowest confidence ones)
indices_to_remask = sorted_indices[tokens_to_unmask:]
# Get the actual indices in the sequence
mask_positions = torch.where(mask_indices)[1]
positions_to_remask = mask_positions[indices_to_remask]
# Remask these positions
x[:, positions_to_remask] = MASK_ID
# Ensure constraints are maintained
for pos, token_id in processed_constraints.items():
absolute_pos = prompt_length + pos
if absolute_pos < x.shape[1]:
x[:, absolute_pos] = token_id
# Create visualization state ONLY for the response part
current_state = []
# Update which tokens are newly revealed in this step
for i in range(gen_length):
pos = prompt_length + i # Absolute position in the sequence
if x[0, pos] == MASK_ID:
# Still masked
current_state.append((MASK_TOKEN, "#444444")) # Dark gray for masks
elif x_old[0, pos] == MASK_ID:
# Newly revealed in this step
token = tokenizer.decode([x[0, pos].item()], skip_special_tokens=True)
confidence = float(top_probs[0, pos].cpu())
# Color based on confidence: red (low) to green (high)
if confidence < 0.3:
color = "#FF6666" # Light red
elif confidence < 0.7:
color = "#FFAA33" # Orange
else:
color = "#66CC66" # Light green
current_state.append((token, color))
revealed_tokens[0, i] = True
else:
# Previously revealed
token = tokenizer.decode([x[0, pos].item()], skip_special_tokens=True)
current_state.append((token, "#6699CC")) # Light blue
visualization_states.append(current_state)
# Extract final text (just the assistant's response)
response_tokens = x[0, prompt_length:]
response_text = tokenizer.decode(response_tokens, skip_special_tokens=True)
# Clean the response text
final_text = tokenizer.decode(response_tokens,
skip_special_tokens=True,
clean_up_tokenization_spaces=True)
return visualization_states, final_text
css = '''
.category-legend{display:none}
button{height: 60px}
'''
def create_chatbot_demo():
with gr.Blocks(css=css) as demo:
gr.Markdown("# LLaDA - Large Language Diffusion Model demo")
gr.Markdown("[model](https://huggingface.co/GSAI-ML/LLaDA-8B-Instruct), [project page](https://ml-gsai.github.io/LLaDA-demo/)")
# STATE MANAGEMENT - IMPORTANT
# We use a dedicated state to track the full conversation history
chat_history = gr.State([])
# UI COMPONENTS
# Chatbot for displaying messages
with gr.Row():
with gr.Column(scale=3):
chatbot_ui = gr.Chatbot(label="Conversation", height=500)
# Message input
with gr.Group():
with gr.Row():
user_input = gr.Textbox(
label="Your Message",
placeholder="Type your message here...",
show_label=False
)
send_btn = gr.Button("Send")
constraints_input = gr.Textbox(
label="Word Constraints",
info="This model allows for placing specific words at specific positions using 'position:word' format. Example: 1st word once, 6th word 'upon' and 11th word 'time', would be: '0:Once, 5:upon, 10:time",
placeholder="0:Once, 5:upon, 10:time",
value=""
)
with gr.Column(scale=2):
output_vis = gr.HighlightedText(
label="Denoising Process Visualization",
combine_adjacent=False,
show_legend=True,
)
# Visualization and response components
with gr.Accordion("Generation Settings", open=False):
with gr.Row():
gen_length = gr.Slider(
minimum=16, maximum=128, value=64, step=8,
label="Generation Length"
)
steps = gr.Slider(
minimum=8, maximum=64, value=32, step=4,
label="Denoising Steps"
)
visualization_delay = gr.Slider(
minimum=0.0, maximum=1.0, value=0.1, step=0.1, visible=False,
label="Visualization Delay (seconds)"
)
# Current response text box
current_response = gr.Textbox(
label="Current Response",
placeholder="The assistant's response will appear here...",
lines=3,
visible=False
)
# Clear button
clear_btn = gr.Button("Clear Conversation")
# HELPER FUNCTIONS
def add_message(history, message, response):
"""Add a message pair to the history and return the updated history"""
history = history.copy()
history.append([message, response])
return history
def user_message_submitted(message, history, gen_length, steps, constraints, delay):
"""Process a submitted user message"""
# Skip empty messages
if not message.strip():
# Return current state unchanged
history_for_display = history.copy()
return history, history_for_display, "", [], ""
# Add user message to history
history = add_message(history, message, None)
# Format for display - temporarily show user message with empty response
history_for_display = history.copy()
# Clear the input
message_out = ""
# Return immediately to update UI with user message
return history, history_for_display, message_out, [], ""
def bot_response(history, gen_length, steps, constraints, delay):
"""Generate bot response for the latest message"""
if not history:
return history, [], ""
# Get the last user message
last_user_message = history[-1][0]
try:
# Format all messages except the last one (which has no response yet)
messages = format_chat_history(history[:-1])
# Add the last user message
messages.append({"role": "user", "content": last_user_message})
# Parse constraints
parsed_constraints = parse_constraints(constraints)
# Generate response with visualization
vis_states, response_text = generate_response_with_visualization(
model, tokenizer, device,
messages,
gen_length=gen_length,
steps=steps,
constraints=parsed_constraints
)
# Update history with the assistant's response
history[-1][1] = response_text
# Return the initial state immediately
yield history, vis_states[0], response_text
# Then animate through visualization states
for state in vis_states[1:]:
time.sleep(delay)
yield history, state, response_text
except Exception as e:
error_msg = f"Error: {str(e)}"
print(error_msg)
# Show error in visualization
error_vis = [(error_msg, "red")]
# Don't update history with error
yield history, error_vis, error_msg
def clear_conversation():
"""Clear the conversation history"""
return [], [], "", []
# EVENT HANDLERS
# Clear button handler
clear_btn.click(
fn=clear_conversation,
inputs=[],
outputs=[chat_history, chatbot_ui, current_response, output_vis]
)
# User message submission flow (2-step process)
# Step 1: Add user message to history and update UI
msg_submit = user_input.submit(
fn=user_message_submitted,
inputs=[user_input, chat_history, gen_length, steps, constraints_input, visualization_delay],
outputs=[chat_history, chatbot_ui, user_input, output_vis, current_response]
)
# Also connect the send button
send_click = send_btn.click(
fn=user_message_submitted,
inputs=[user_input, chat_history, gen_length, steps, constraints_input, visualization_delay],
outputs=[chat_history, chatbot_ui, user_input, output_vis, current_response]
)
# Step 2: Generate bot response
# This happens after the user message is displayed
msg_submit.then(
fn=bot_response,
inputs=[chat_history, gen_length, steps, constraints_input, visualization_delay],
outputs=[chatbot_ui, output_vis, current_response]
)
send_click.then(
fn=bot_response,
inputs=[chat_history, gen_length, steps, constraints_input, visualization_delay],
outputs=[chatbot_ui, output_vis, current_response]
)
return demo
# Launch the demo
if __name__ == "__main__":
demo = create_chatbot_demo()
demo.queue().launch(share=True)