File size: 3,670 Bytes
f6d8cac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch
import torch.nn.functional as F

from transformers import AutoTokenizer, AutoModel


def forward_process(batch, prompt_index, mask_id):
    b, l = batch.shape

    target_len = (l - prompt_index.sum()).item()
    k = torch.randint(1, target_len + 1, (), device=batch.device)

    x = torch.round(torch.linspace(float(k), k + (b - 1) * (target_len / b), steps=b, device=batch.device)).long()
    x = ((x - 1) % target_len) + 1
    assert x.min() >= 1 and x.max() <= target_len

    indices = torch.arange(target_len, device=batch.device).repeat(b, 1)
    is_mask = indices < x.unsqueeze(1)
    for i in range(b):
        is_mask[i] = is_mask[i][torch.randperm(target_len)]

    is_mask = torch.cat((torch.zeros(b, prompt_index.sum(), dtype=torch.bool, device=batch.device), is_mask), dim=1)
    noisy_batch = torch.where(is_mask, mask_id, batch)

    # Return the masked batch and the mask ratio
    return noisy_batch, (x / target_len).unsqueeze(1).repeat(1, l)


def get_logits(model, batch, prompt_index, cfg_scale, mask_id):
    if cfg_scale > 0.:
        assert len(prompt_index) == batch.shape[1]
        prompt_index = prompt_index.unsqueeze(0).repeat(batch.shape[0], 1)
        un_batch = batch.clone()
        un_batch[prompt_index] = mask_id
        batch = torch.cat([batch, un_batch])

    input = batch
    logits = model(input).logits

    if cfg_scale > 0.:
        logits, un_logits = torch.chunk(logits, 2, dim=0)
        logits = un_logits + (cfg_scale + 1) * (logits - un_logits)
    return logits


@ torch.no_grad()
def get_log_likelihood(model, prompt, answer, mc_num=128, batch_size=16, cfg_scale=0., mask_id=126336):
    '''
    Args:
        model: Mask predictor.
        prompt: A tensor of shape (l1).
        answer: A tensor of shape (l2).
        mc_num: Monte Carlo estimation times.
                As detailed in Appendix B.5. Since MMLU, CMMLU, and C-EVAL only require the likelihood of a single token, a
                single Monte Carlo estimate is sufficient for these benchmarks. For all other benchmarks, we find that 128
                Monte Carlo samples are adequate to produce stable results.
        batch_size: Mini batch size.
        cfg_scale: Unsupervised classifier-free guidance scale.
        mask_id: The toke id of [MASK] is 126336.
    '''
    seq = torch.concatenate([prompt, answer])[None, :]
    seq = seq.repeat((batch_size, 1)).to(model.device)
    prompt_index = torch.arange(seq.shape[1], device=model.device) < len(prompt)

    loss_ = []
    for _ in range(mc_num // batch_size):
        perturbed_seq, p_mask = forward_process(seq, prompt_index, mask_id)
        mask_index = perturbed_seq == mask_id

        logits = get_logits(model, perturbed_seq, prompt_index, cfg_scale, mask_id)

        loss = F.cross_entropy(logits[mask_index], seq[mask_index], reduction='none') / p_mask[mask_index]
        loss = loss.sum() / batch_size

        loss_.append(loss.item())

    return - sum(loss_) / len(loss_)


def main():
    device = 'cuda'

    model = AutoModel.from_pretrained('GSAI-ML/LLaDA-8B-Base', trust_remote_code=True, torch_dtype=torch.bfloat16).to(device).eval()
    tokenizer = AutoTokenizer.from_pretrained('GSAI-ML/LLaDA-8B-Base', trust_remote_code=True)

    # this prompt and answer is from Hellaswag dataset
    prompt = 'Roof shingle removal: A man is sitting on a roof. He'
    answer = ' is using wrap to wrap a pair of skis.'

    prompt = torch.tensor(tokenizer(prompt)['input_ids']).to(device)
    answer = torch.tensor(tokenizer(answer)['input_ids']).to(device)
    print(get_log_likelihood(model, prompt, answer, mc_num=128))


if __name__ == '__main__':
    main()