from typing import Optional import gradio as gr import numpy as np import torch from PIL import Image import io import base64, os from util.utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img import torch from PIL import Image import ast # 定义模型路径,使用相对路径,并使用 os.path.join 确保跨平台兼容性 MODEL_DIR = 'weights' YOLO_MODEL_PATH = os.path.join(MODEL_DIR, 'icon_detect', 'model.pt') CAPTION_MODEL_PATH = os.path.join(MODEL_DIR, 'icon_caption') # BLIP2_CAPTION_MODEL_PATH = os.path.join(MODEL_DIR, 'icon_caption_blip2') # 如果使用 BLIP2 模型 yolo_model = get_yolo_model(model_path='weights/icon_detect/model.pt') caption_model_processor = get_caption_model_processor(model_name="ollama", model_name_or_path=CAPTION_MODEL_PATH) # caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2") MARKDOWN = """ # OmniParser for Pure Vision Based General GUI Agent嘻嘻 🔥
Arxiv
OmniParser is a screen parsing tool to convert general GUI screen to structured elements. """ DEVICE = torch.device('cuda') def process( image_input, box_threshold, iou_threshold, use_paddleocr, imgsz ) -> Optional[Image.Image]: image_save_path = 'imgs/saved_image_demo.png' image_input.save(image_save_path) image = Image.open(image_save_path) box_overlay_ratio = image.size[0] / 3200 draw_bbox_config = { 'text_scale': 0.8 * box_overlay_ratio, 'text_thickness': max(int(2 * box_overlay_ratio), 1), 'text_padding': max(int(3 * box_overlay_ratio), 1), 'thickness': max(int(3 * box_overlay_ratio), 1), } ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_save_path, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9}, use_paddleocr=use_paddleocr) text, ocr_bbox_input = ocr_bbox_rslt # Correctly handle ocr_bbox and ocr_text if ocr_bbox_input is None or not ocr_bbox_input: ocr_bbox = [] ocr_text = [] else: ocr_bbox = [] for box_str in ocr_bbox_input: try: # 使用 eval(),但要非常小心! box = eval(box_str) # 转换为元组 ocr_bbox.append(box) except (SyntaxError, NameError, TypeError, ValueError): print(f"警告:无法解析边界框字符串:{box_str}") # 打印警告信息,但继续处理其他框 continue # 跳过错误的框 ocr_text = text # 使用 check_ocr_box 返回的 text dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_save_path, yolo_model, BOX_TRESHOLD=box_threshold, output_coord_in_ratio=True, ocr_bbox=ocr_bbox, draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=ocr_text, iou_threshold=iou_threshold, imgsz=imgsz) image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img))) print('finish processing') parsed_content_list = '\n'.join([f'icon {i}: ' + str(v) for i,v in enumerate(parsed_content_list)]) return image, str(parsed_content_list) with gr.Blocks() as demo: gr.Markdown(MARKDOWN) with gr.Row(): with gr.Column(): image_input_component = gr.Image(type='pil', label='Upload image') box_threshold_component = gr.Slider(label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05) iou_threshold_component = gr.Slider(label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1) use_paddleocr_component = gr.Checkbox(label='Use PaddleOCR', value=True) imgsz_component = gr.Slider(label='Icon Detect Image Size', minimum=640, maximum=1920, step=32, value=640) submit_button_component = gr.Button(value='Submit', variant='primary') with gr.Column(): image_output_component = gr.Image(type='pil', label='Image Output') text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output') submit_button_component.click( fn=process, inputs=[ image_input_component, box_threshold_component, iou_threshold_component, use_paddleocr_component, imgsz_component ], outputs=[image_output_component, text_output_component] ) demo.launch(share=True, server_port=7861, server_name='0.0.0.0')