Spaces:
Running
Running
File size: 4,848 Bytes
452e24d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
from typing import Optional
import gradio as gr
import numpy as np
import torch
from PIL import Image
import io
import base64, os
from util.utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
import torch
from PIL import Image
import ast
# 定义模型路径,使用相对路径,并使用 os.path.join 确保跨平台兼容性
MODEL_DIR = 'weights'
YOLO_MODEL_PATH = os.path.join(MODEL_DIR, 'icon_detect', 'model.pt')
CAPTION_MODEL_PATH = os.path.join(MODEL_DIR, 'icon_caption')
# BLIP2_CAPTION_MODEL_PATH = os.path.join(MODEL_DIR, 'icon_caption_blip2') # 如果使用 BLIP2 模型
yolo_model = get_yolo_model(model_path='weights/icon_detect/model.pt')
caption_model_processor = get_caption_model_processor(model_name="ollama", model_name_or_path=CAPTION_MODEL_PATH)
# caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2")
MARKDOWN = """
# OmniParser for Pure Vision Based General GUI Agent嘻嘻 🔥
<div>
<a href="https://arxiv.org/pdf/2408.00203">
<img src="https://img.shields.io/badge/arXiv-2408.00203-b31b1b.svg" alt="Arxiv" style="display:inline-block;">
</a>
</div>
OmniParser is a screen parsing tool to convert general GUI screen to structured elements.
"""
DEVICE = torch.device('cuda')
def process(
image_input,
box_threshold,
iou_threshold,
use_paddleocr,
imgsz
) -> Optional[Image.Image]:
image_save_path = 'imgs/saved_image_demo.png'
image_input.save(image_save_path)
image = Image.open(image_save_path)
box_overlay_ratio = image.size[0] / 3200
draw_bbox_config = {
'text_scale': 0.8 * box_overlay_ratio,
'text_thickness': max(int(2 * box_overlay_ratio), 1),
'text_padding': max(int(3 * box_overlay_ratio), 1),
'thickness': max(int(3 * box_overlay_ratio), 1),
}
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_save_path, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9}, use_paddleocr=use_paddleocr)
text, ocr_bbox_input = ocr_bbox_rslt
# Correctly handle ocr_bbox and ocr_text
if ocr_bbox_input is None or not ocr_bbox_input:
ocr_bbox = []
ocr_text = []
else:
ocr_bbox = []
for box_str in ocr_bbox_input:
try:
# 使用 eval(),但要非常小心!
box = eval(box_str) # 转换为元组
ocr_bbox.append(box)
except (SyntaxError, NameError, TypeError, ValueError):
print(f"警告:无法解析边界框字符串:{box_str}") # 打印警告信息,但继续处理其他框
continue # 跳过错误的框
ocr_text = text # 使用 check_ocr_box 返回的 text
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_save_path, yolo_model, BOX_TRESHOLD=box_threshold, output_coord_in_ratio=True, ocr_bbox=ocr_bbox, draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=ocr_text, iou_threshold=iou_threshold, imgsz=imgsz)
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
print('finish processing')
parsed_content_list = '\n'.join([f'icon {i}: ' + str(v) for i,v in enumerate(parsed_content_list)])
return image, str(parsed_content_list)
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
image_input_component = gr.Image(type='pil', label='Upload image')
box_threshold_component = gr.Slider(label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05)
iou_threshold_component = gr.Slider(label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1)
use_paddleocr_component = gr.Checkbox(label='Use PaddleOCR', value=True)
imgsz_component = gr.Slider(label='Icon Detect Image Size', minimum=640, maximum=1920, step=32, value=640)
submit_button_component = gr.Button(value='Submit', variant='primary')
with gr.Column():
image_output_component = gr.Image(type='pil', label='Image Output')
text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output')
submit_button_component.click(
fn=process,
inputs=[
image_input_component,
box_threshold_component,
iou_threshold_component,
use_paddleocr_component,
imgsz_component
],
outputs=[image_output_component, text_output_component]
)
demo.launch(share=True, server_port=7861, server_name='0.0.0.0') |