Spaces:
Running
on
L4
Running
on
L4
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from tqdm.auto import tqdm | |
import os, argparse, datetime, math | |
import logging | |
from omegaconf import OmegaConf | |
import shutil | |
from latentsync.data.syncnet_dataset import SyncNetDataset | |
from latentsync.models.syncnet import SyncNet | |
from latentsync.models.syncnet_wav2lip import SyncNetWav2Lip | |
from latentsync.utils.util import gather_loss, plot_loss_chart | |
from accelerate.utils import set_seed | |
import torch | |
from diffusers import AutoencoderKL | |
from diffusers.utils.logging import get_logger | |
from einops import rearrange | |
import torch.distributed as dist | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
from torch.utils.data.distributed import DistributedSampler | |
from latentsync.utils.util import init_dist, cosine_loss | |
logger = get_logger(__name__) | |
def main(config): | |
# Initialize distributed training | |
local_rank = init_dist() | |
global_rank = dist.get_rank() | |
num_processes = dist.get_world_size() | |
is_main_process = global_rank == 0 | |
seed = config.run.seed + global_rank | |
set_seed(seed) | |
# Logging folder | |
folder_name = "train" + datetime.datetime.now().strftime(f"-%Y_%m_%d-%H:%M:%S") | |
output_dir = os.path.join(config.data.train_output_dir, folder_name) | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
# Handle the output folder creation | |
if is_main_process: | |
os.makedirs(output_dir, exist_ok=True) | |
os.makedirs(f"{output_dir}/checkpoints", exist_ok=True) | |
os.makedirs(f"{output_dir}/loss_charts", exist_ok=True) | |
shutil.copy(config.config_path, output_dir) | |
device = torch.device(local_rank) | |
if config.data.latent_space: | |
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16) | |
vae.requires_grad_(False) | |
vae.to(device) | |
else: | |
vae = None | |
# Dataset and Dataloader setup | |
train_dataset = SyncNetDataset(config.data.train_data_dir, config.data.train_fileslist, config) | |
val_dataset = SyncNetDataset(config.data.val_data_dir, config.data.val_fileslist, config) | |
train_distributed_sampler = DistributedSampler( | |
train_dataset, | |
num_replicas=num_processes, | |
rank=global_rank, | |
shuffle=True, | |
seed=config.run.seed, | |
) | |
# DataLoaders creation: | |
train_dataloader = torch.utils.data.DataLoader( | |
train_dataset, | |
batch_size=config.data.batch_size, | |
shuffle=False, | |
sampler=train_distributed_sampler, | |
num_workers=config.data.num_workers, | |
pin_memory=False, | |
drop_last=True, | |
worker_init_fn=train_dataset.worker_init_fn, | |
) | |
num_samples_limit = 640 | |
val_batch_size = min( | |
num_samples_limit // config.data.num_frames, config.data.batch_size | |
) # limit batch size to avoid CUDA OOM | |
val_dataloader = torch.utils.data.DataLoader( | |
val_dataset, | |
batch_size=val_batch_size, | |
shuffle=False, | |
num_workers=config.data.num_workers, | |
pin_memory=False, | |
drop_last=False, | |
worker_init_fn=val_dataset.worker_init_fn, | |
) | |
# Model | |
syncnet = SyncNet(OmegaConf.to_container(config.model)).to(device) | |
# syncnet = SyncNetWav2Lip().to(device) | |
optimizer = torch.optim.AdamW( | |
list(filter(lambda p: p.requires_grad, syncnet.parameters())), lr=config.optimizer.lr | |
) | |
if config.ckpt.resume_ckpt_path != "": | |
if is_main_process: | |
logger.info(f"Load checkpoint from: {config.ckpt.resume_ckpt_path}") | |
ckpt = torch.load(config.ckpt.resume_ckpt_path, map_location=device) | |
syncnet.load_state_dict(ckpt["state_dict"]) | |
global_step = ckpt["global_step"] | |
train_step_list = ckpt["train_step_list"] | |
train_loss_list = ckpt["train_loss_list"] | |
val_step_list = ckpt["val_step_list"] | |
val_loss_list = ckpt["val_loss_list"] | |
else: | |
global_step = 0 | |
train_step_list = [] | |
train_loss_list = [] | |
val_step_list = [] | |
val_loss_list = [] | |
# DDP wrapper | |
syncnet = DDP(syncnet, device_ids=[local_rank], output_device=local_rank) | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader)) | |
num_train_epochs = math.ceil(config.run.max_train_steps / num_update_steps_per_epoch) | |
# validation_steps = int(config.ckpt.save_ckpt_steps // 5) | |
# validation_steps = 100 | |
if is_main_process: | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num Epochs = {num_train_epochs}") | |
logger.info(f" Instantaneous batch size per device = {config.data.batch_size}") | |
logger.info(f" Total train batch size (w. parallel & distributed) = {config.data.batch_size * num_processes}") | |
logger.info(f" Total optimization steps = {config.run.max_train_steps}") | |
first_epoch = global_step // num_update_steps_per_epoch | |
num_val_batches = config.data.num_val_samples // (num_processes * config.data.batch_size) | |
# Only show the progress bar once on each machine. | |
progress_bar = tqdm( | |
range(0, config.run.max_train_steps), initial=global_step, desc="Steps", disable=not is_main_process | |
) | |
# Support mixed-precision training | |
scaler = torch.cuda.amp.GradScaler() if config.run.mixed_precision_training else None | |
for epoch in range(first_epoch, num_train_epochs): | |
train_dataloader.sampler.set_epoch(epoch) | |
syncnet.train() | |
for step, batch in enumerate(train_dataloader): | |
### >>>> Training >>>> ### | |
frames = batch["frames"].to(device, dtype=torch.float16) | |
audio_samples = batch["audio_samples"].to(device, dtype=torch.float16) | |
y = batch["y"].to(device, dtype=torch.float32) | |
if config.data.latent_space: | |
max_batch_size = ( | |
num_samples_limit // config.data.num_frames | |
) # due to the limited cuda memory, we split the input frames into parts | |
if frames.shape[0] > max_batch_size: | |
assert ( | |
frames.shape[0] % max_batch_size == 0 | |
), f"max_batch_size {max_batch_size} should be divisible by batch_size {frames.shape[0]}" | |
frames_part_results = [] | |
for i in range(0, frames.shape[0], max_batch_size): | |
frames_part = frames[i : i + max_batch_size] | |
frames_part = rearrange(frames_part, "b f c h w -> (b f) c h w") | |
with torch.no_grad(): | |
frames_part = vae.encode(frames_part).latent_dist.sample() * 0.18215 | |
frames_part_results.append(frames_part) | |
frames = torch.cat(frames_part_results, dim=0) | |
else: | |
frames = rearrange(frames, "b f c h w -> (b f) c h w") | |
with torch.no_grad(): | |
frames = vae.encode(frames).latent_dist.sample() * 0.18215 | |
frames = rearrange(frames, "(b f) c h w -> b (f c) h w", f=config.data.num_frames) | |
else: | |
frames = rearrange(frames, "b f c h w -> b (f c) h w") | |
if config.data.lower_half: | |
height = frames.shape[2] | |
frames = frames[:, :, height // 2 :, :] | |
# audio_embeds = wav2vec_encoder(audio_samples).last_hidden_state | |
# Mixed-precision training | |
with torch.autocast(device_type="cuda", dtype=torch.float16, enabled=config.run.mixed_precision_training): | |
vision_embeds, audio_embeds = syncnet(frames, audio_samples) | |
loss = cosine_loss(vision_embeds.float(), audio_embeds.float(), y).mean() | |
optimizer.zero_grad() | |
# Backpropagate | |
if config.run.mixed_precision_training: | |
scaler.scale(loss).backward() | |
""" >>> gradient clipping >>> """ | |
scaler.unscale_(optimizer) | |
torch.nn.utils.clip_grad_norm_(syncnet.parameters(), config.optimizer.max_grad_norm) | |
""" <<< gradient clipping <<< """ | |
scaler.step(optimizer) | |
scaler.update() | |
else: | |
loss.backward() | |
""" >>> gradient clipping >>> """ | |
torch.nn.utils.clip_grad_norm_(syncnet.parameters(), config.optimizer.max_grad_norm) | |
""" <<< gradient clipping <<< """ | |
optimizer.step() | |
progress_bar.update(1) | |
global_step += 1 | |
global_average_loss = gather_loss(loss, device) | |
train_step_list.append(global_step) | |
train_loss_list.append(global_average_loss) | |
if is_main_process and global_step % config.run.validation_steps == 0: | |
logger.info(f"Validation at step {global_step}") | |
val_loss = validation( | |
val_dataloader, | |
device, | |
syncnet, | |
cosine_loss, | |
config.data.latent_space, | |
config.data.lower_half, | |
vae, | |
num_val_batches, | |
) | |
val_step_list.append(global_step) | |
val_loss_list.append(val_loss) | |
logger.info(f"Validation loss at step {global_step} is {val_loss:0.3f}") | |
if is_main_process and global_step % config.ckpt.save_ckpt_steps == 0: | |
checkpoint_save_path = os.path.join(output_dir, f"checkpoints/checkpoint-{global_step}.pt") | |
torch.save( | |
{ | |
"state_dict": syncnet.module.state_dict(), # to unwrap DDP | |
"global_step": global_step, | |
"train_step_list": train_step_list, | |
"train_loss_list": train_loss_list, | |
"val_step_list": val_step_list, | |
"val_loss_list": val_loss_list, | |
}, | |
checkpoint_save_path, | |
) | |
logger.info(f"Saved checkpoint to {checkpoint_save_path}") | |
plot_loss_chart( | |
os.path.join(output_dir, f"loss_charts/loss_chart-{global_step}.png"), | |
("Train loss", train_step_list, train_loss_list), | |
("Val loss", val_step_list, val_loss_list), | |
) | |
progress_bar.set_postfix({"step_loss": global_average_loss}) | |
if global_step >= config.run.max_train_steps: | |
break | |
progress_bar.close() | |
dist.destroy_process_group() | |
def validation(val_dataloader, device, syncnet, cosine_loss, latent_space, lower_half, vae, num_val_batches): | |
syncnet.eval() | |
losses = [] | |
val_step = 0 | |
while True: | |
for step, batch in enumerate(val_dataloader): | |
### >>>> Validation >>>> ### | |
frames = batch["frames"].to(device, dtype=torch.float16) | |
audio_samples = batch["audio_samples"].to(device, dtype=torch.float16) | |
y = batch["y"].to(device, dtype=torch.float32) | |
if latent_space: | |
num_frames = frames.shape[1] | |
frames = rearrange(frames, "b f c h w -> (b f) c h w") | |
frames = vae.encode(frames).latent_dist.sample() * 0.18215 | |
frames = rearrange(frames, "(b f) c h w -> b (f c) h w", f=num_frames) | |
else: | |
frames = rearrange(frames, "b f c h w -> b (f c) h w") | |
if lower_half: | |
height = frames.shape[2] | |
frames = frames[:, :, height // 2 :, :] | |
with torch.autocast(device_type="cuda", dtype=torch.float16): | |
vision_embeds, audio_embeds = syncnet(frames, audio_samples) | |
loss = cosine_loss(vision_embeds.float(), audio_embeds.float(), y).mean() | |
losses.append(loss.item()) | |
val_step += 1 | |
if val_step > num_val_batches: | |
syncnet.train() | |
if len(losses) == 0: | |
raise RuntimeError("No validation data") | |
return sum(losses) / len(losses) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Code to train the expert lip-sync discriminator") | |
parser.add_argument("--config_path", type=str, default="configs/syncnet/syncnet_16_vae.yaml") | |
args = parser.parse_args() | |
# Load a configuration file | |
config = OmegaConf.load(args.config_path) | |
config.config_path = args.config_path | |
main(config) | |