LatentSync / preprocess /affine_transform.py
fffiloni's picture
Migrated from GitHub
3650c12 verified
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from latentsync.utils.util import read_video, write_video
from latentsync.utils.image_processor import ImageProcessor
import torch
from einops import rearrange
import os
import tqdm
import subprocess
from multiprocessing import Process
import shutil
paths = []
def gather_video_paths(input_dir, output_dir):
for video in sorted(os.listdir(input_dir)):
if video.endswith(".mp4"):
video_input = os.path.join(input_dir, video)
video_output = os.path.join(output_dir, video)
if os.path.isfile(video_output):
continue
paths.append((video_input, video_output))
elif os.path.isdir(os.path.join(input_dir, video)):
gather_video_paths(os.path.join(input_dir, video), os.path.join(output_dir, video))
class FaceDetector:
def __init__(self, resolution: int = 512, device: str = "cpu"):
self.image_processor = ImageProcessor(resolution, "fix_mask", device)
def affine_transform_video(self, video_path):
video_frames = read_video(video_path, change_fps=False)
results = []
for frame in video_frames:
frame, _, _ = self.image_processor.affine_transform(frame)
results.append(frame)
results = torch.stack(results)
results = rearrange(results, "f c h w -> f h w c").numpy()
return results
def close(self):
self.image_processor.close()
def combine_video_audio(video_frames, video_input_path, video_output_path, process_temp_dir):
video_name = os.path.basename(video_input_path)[:-4]
audio_temp = os.path.join(process_temp_dir, f"{video_name}_temp.wav")
video_temp = os.path.join(process_temp_dir, f"{video_name}_temp.mp4")
write_video(video_temp, video_frames, fps=25)
command = f"ffmpeg -y -loglevel error -i {video_input_path} -q:a 0 -map a {audio_temp}"
subprocess.run(command, shell=True)
os.makedirs(os.path.dirname(video_output_path), exist_ok=True)
command = f"ffmpeg -y -loglevel error -i {video_temp} -i {audio_temp} -c:v libx264 -c:a aac -map 0:v -map 1:a -q:v 0 -q:a 0 {video_output_path}"
subprocess.run(command, shell=True)
os.remove(audio_temp)
os.remove(video_temp)
def func(paths, process_temp_dir, device_id, resolution):
os.makedirs(process_temp_dir, exist_ok=True)
face_detector = FaceDetector(resolution, f"cuda:{device_id}")
for video_input, video_output in paths:
if os.path.isfile(video_output):
continue
try:
video_frames = face_detector.affine_transform_video(video_input)
except Exception as e: # Handle the exception of face not detcted
print(f"Exception: {e} - {video_input}")
continue
os.makedirs(os.path.dirname(video_output), exist_ok=True)
combine_video_audio(video_frames, video_input, video_output, process_temp_dir)
print(f"Saved: {video_output}")
face_detector.close()
def split(a, n):
k, m = divmod(len(a), n)
return (a[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n))
def affine_transform_multi_gpus(input_dir, output_dir, temp_dir, resolution, num_workers):
print(f"Recursively gathering video paths of {input_dir} ...")
gather_video_paths(input_dir, output_dir)
num_devices = torch.cuda.device_count()
if num_devices == 0:
raise RuntimeError("No GPUs found")
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
os.makedirs(temp_dir, exist_ok=True)
split_paths = list(split(paths, num_workers * num_devices))
processes = []
for i in range(num_devices):
for j in range(num_workers):
process_index = i * num_workers + j
process = Process(
target=func, args=(split_paths[process_index], os.path.join(temp_dir, f"process_{i}"), i, resolution)
)
process.start()
processes.append(process)
for process in processes:
process.join()
if __name__ == "__main__":
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/avatars/resampled/train"
output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/avatars/affine_transformed/train"
temp_dir = "temp"
resolution = 256
num_workers = 10 # How many processes per device
affine_transform_multi_gpus(input_dir, output_dir, temp_dir, resolution, num_workers)