Spaces:
Running
on
L4
Running
on
L4
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from latentsync.utils.util import read_video, write_video | |
from latentsync.utils.image_processor import ImageProcessor | |
import torch | |
from einops import rearrange | |
import os | |
import tqdm | |
import subprocess | |
from multiprocessing import Process | |
import shutil | |
paths = [] | |
def gather_video_paths(input_dir, output_dir): | |
for video in sorted(os.listdir(input_dir)): | |
if video.endswith(".mp4"): | |
video_input = os.path.join(input_dir, video) | |
video_output = os.path.join(output_dir, video) | |
if os.path.isfile(video_output): | |
continue | |
paths.append((video_input, video_output)) | |
elif os.path.isdir(os.path.join(input_dir, video)): | |
gather_video_paths(os.path.join(input_dir, video), os.path.join(output_dir, video)) | |
class FaceDetector: | |
def __init__(self, resolution: int = 512, device: str = "cpu"): | |
self.image_processor = ImageProcessor(resolution, "fix_mask", device) | |
def affine_transform_video(self, video_path): | |
video_frames = read_video(video_path, change_fps=False) | |
results = [] | |
for frame in video_frames: | |
frame, _, _ = self.image_processor.affine_transform(frame) | |
results.append(frame) | |
results = torch.stack(results) | |
results = rearrange(results, "f c h w -> f h w c").numpy() | |
return results | |
def close(self): | |
self.image_processor.close() | |
def combine_video_audio(video_frames, video_input_path, video_output_path, process_temp_dir): | |
video_name = os.path.basename(video_input_path)[:-4] | |
audio_temp = os.path.join(process_temp_dir, f"{video_name}_temp.wav") | |
video_temp = os.path.join(process_temp_dir, f"{video_name}_temp.mp4") | |
write_video(video_temp, video_frames, fps=25) | |
command = f"ffmpeg -y -loglevel error -i {video_input_path} -q:a 0 -map a {audio_temp}" | |
subprocess.run(command, shell=True) | |
os.makedirs(os.path.dirname(video_output_path), exist_ok=True) | |
command = f"ffmpeg -y -loglevel error -i {video_temp} -i {audio_temp} -c:v libx264 -c:a aac -map 0:v -map 1:a -q:v 0 -q:a 0 {video_output_path}" | |
subprocess.run(command, shell=True) | |
os.remove(audio_temp) | |
os.remove(video_temp) | |
def func(paths, process_temp_dir, device_id, resolution): | |
os.makedirs(process_temp_dir, exist_ok=True) | |
face_detector = FaceDetector(resolution, f"cuda:{device_id}") | |
for video_input, video_output in paths: | |
if os.path.isfile(video_output): | |
continue | |
try: | |
video_frames = face_detector.affine_transform_video(video_input) | |
except Exception as e: # Handle the exception of face not detcted | |
print(f"Exception: {e} - {video_input}") | |
continue | |
os.makedirs(os.path.dirname(video_output), exist_ok=True) | |
combine_video_audio(video_frames, video_input, video_output, process_temp_dir) | |
print(f"Saved: {video_output}") | |
face_detector.close() | |
def split(a, n): | |
k, m = divmod(len(a), n) | |
return (a[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n)) | |
def affine_transform_multi_gpus(input_dir, output_dir, temp_dir, resolution, num_workers): | |
print(f"Recursively gathering video paths of {input_dir} ...") | |
gather_video_paths(input_dir, output_dir) | |
num_devices = torch.cuda.device_count() | |
if num_devices == 0: | |
raise RuntimeError("No GPUs found") | |
if os.path.exists(temp_dir): | |
shutil.rmtree(temp_dir) | |
os.makedirs(temp_dir, exist_ok=True) | |
split_paths = list(split(paths, num_workers * num_devices)) | |
processes = [] | |
for i in range(num_devices): | |
for j in range(num_workers): | |
process_index = i * num_workers + j | |
process = Process( | |
target=func, args=(split_paths[process_index], os.path.join(temp_dir, f"process_{i}"), i, resolution) | |
) | |
process.start() | |
processes.append(process) | |
for process in processes: | |
process.join() | |
if __name__ == "__main__": | |
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/avatars/resampled/train" | |
output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/avatars/affine_transformed/train" | |
temp_dir = "temp" | |
resolution = 256 | |
num_workers = 10 # How many processes per device | |
affine_transform_multi_gpus(input_dir, output_dir, temp_dir, resolution, num_workers) | |