Spaces:
Running
on
L4
Running
on
L4
# Adapted from https://github.com/SSL92/hyperIQA/blob/master/models.py | |
import torch as torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from torch.nn import init | |
import math | |
import torch.utils.model_zoo as model_zoo | |
model_urls = { | |
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', | |
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', | |
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', | |
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', | |
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', | |
} | |
class HyperNet(nn.Module): | |
""" | |
Hyper network for learning perceptual rules. | |
Args: | |
lda_out_channels: local distortion aware module output size. | |
hyper_in_channels: input feature channels for hyper network. | |
target_in_size: input vector size for target network. | |
target_fc(i)_size: fully connection layer size of target network. | |
feature_size: input feature map width/height for hyper network. | |
Note: | |
For size match, input args must satisfy: 'target_fc(i)_size * target_fc(i+1)_size' is divisible by 'feature_size ^ 2'. | |
""" | |
def __init__(self, lda_out_channels, hyper_in_channels, target_in_size, target_fc1_size, target_fc2_size, target_fc3_size, target_fc4_size, feature_size): | |
super(HyperNet, self).__init__() | |
self.hyperInChn = hyper_in_channels | |
self.target_in_size = target_in_size | |
self.f1 = target_fc1_size | |
self.f2 = target_fc2_size | |
self.f3 = target_fc3_size | |
self.f4 = target_fc4_size | |
self.feature_size = feature_size | |
self.res = resnet50_backbone(lda_out_channels, target_in_size, pretrained=True) | |
self.pool = nn.AdaptiveAvgPool2d((1, 1)) | |
# Conv layers for resnet output features | |
self.conv1 = nn.Sequential( | |
nn.Conv2d(2048, 1024, 1, padding=(0, 0)), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(1024, 512, 1, padding=(0, 0)), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(512, self.hyperInChn, 1, padding=(0, 0)), | |
nn.ReLU(inplace=True) | |
) | |
# Hyper network part, conv for generating target fc weights, fc for generating target fc biases | |
self.fc1w_conv = nn.Conv2d(self.hyperInChn, int(self.target_in_size * self.f1 / feature_size ** 2), 3, padding=(1, 1)) | |
self.fc1b_fc = nn.Linear(self.hyperInChn, self.f1) | |
self.fc2w_conv = nn.Conv2d(self.hyperInChn, int(self.f1 * self.f2 / feature_size ** 2), 3, padding=(1, 1)) | |
self.fc2b_fc = nn.Linear(self.hyperInChn, self.f2) | |
self.fc3w_conv = nn.Conv2d(self.hyperInChn, int(self.f2 * self.f3 / feature_size ** 2), 3, padding=(1, 1)) | |
self.fc3b_fc = nn.Linear(self.hyperInChn, self.f3) | |
self.fc4w_conv = nn.Conv2d(self.hyperInChn, int(self.f3 * self.f4 / feature_size ** 2), 3, padding=(1, 1)) | |
self.fc4b_fc = nn.Linear(self.hyperInChn, self.f4) | |
self.fc5w_fc = nn.Linear(self.hyperInChn, self.f4) | |
self.fc5b_fc = nn.Linear(self.hyperInChn, 1) | |
# initialize | |
for i, m_name in enumerate(self._modules): | |
if i > 2: | |
nn.init.kaiming_normal_(self._modules[m_name].weight.data) | |
def forward(self, img): | |
feature_size = self.feature_size | |
res_out = self.res(img) | |
# input vector for target net | |
target_in_vec = res_out['target_in_vec'].reshape(-1, self.target_in_size, 1, 1) | |
# input features for hyper net | |
hyper_in_feat = self.conv1(res_out['hyper_in_feat']).reshape(-1, self.hyperInChn, feature_size, feature_size) | |
# generating target net weights & biases | |
target_fc1w = self.fc1w_conv(hyper_in_feat).reshape(-1, self.f1, self.target_in_size, 1, 1) | |
target_fc1b = self.fc1b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f1) | |
target_fc2w = self.fc2w_conv(hyper_in_feat).reshape(-1, self.f2, self.f1, 1, 1) | |
target_fc2b = self.fc2b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f2) | |
target_fc3w = self.fc3w_conv(hyper_in_feat).reshape(-1, self.f3, self.f2, 1, 1) | |
target_fc3b = self.fc3b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f3) | |
target_fc4w = self.fc4w_conv(hyper_in_feat).reshape(-1, self.f4, self.f3, 1, 1) | |
target_fc4b = self.fc4b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f4) | |
target_fc5w = self.fc5w_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, 1, self.f4, 1, 1) | |
target_fc5b = self.fc5b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, 1) | |
out = {} | |
out['target_in_vec'] = target_in_vec | |
out['target_fc1w'] = target_fc1w | |
out['target_fc1b'] = target_fc1b | |
out['target_fc2w'] = target_fc2w | |
out['target_fc2b'] = target_fc2b | |
out['target_fc3w'] = target_fc3w | |
out['target_fc3b'] = target_fc3b | |
out['target_fc4w'] = target_fc4w | |
out['target_fc4b'] = target_fc4b | |
out['target_fc5w'] = target_fc5w | |
out['target_fc5b'] = target_fc5b | |
return out | |
class TargetNet(nn.Module): | |
""" | |
Target network for quality prediction. | |
""" | |
def __init__(self, paras): | |
super(TargetNet, self).__init__() | |
self.l1 = nn.Sequential( | |
TargetFC(paras['target_fc1w'], paras['target_fc1b']), | |
nn.Sigmoid(), | |
) | |
self.l2 = nn.Sequential( | |
TargetFC(paras['target_fc2w'], paras['target_fc2b']), | |
nn.Sigmoid(), | |
) | |
self.l3 = nn.Sequential( | |
TargetFC(paras['target_fc3w'], paras['target_fc3b']), | |
nn.Sigmoid(), | |
) | |
self.l4 = nn.Sequential( | |
TargetFC(paras['target_fc4w'], paras['target_fc4b']), | |
nn.Sigmoid(), | |
TargetFC(paras['target_fc5w'], paras['target_fc5b']), | |
) | |
def forward(self, x): | |
q = self.l1(x) | |
# q = F.dropout(q) | |
q = self.l2(q) | |
q = self.l3(q) | |
q = self.l4(q).squeeze() | |
return q | |
class TargetFC(nn.Module): | |
""" | |
Fully connection operations for target net | |
Note: | |
Weights & biases are different for different images in a batch, | |
thus here we use group convolution for calculating images in a batch with individual weights & biases. | |
""" | |
def __init__(self, weight, bias): | |
super(TargetFC, self).__init__() | |
self.weight = weight | |
self.bias = bias | |
def forward(self, input_): | |
input_re = input_.reshape(-1, input_.shape[0] * input_.shape[1], input_.shape[2], input_.shape[3]) | |
weight_re = self.weight.reshape(self.weight.shape[0] * self.weight.shape[1], self.weight.shape[2], self.weight.shape[3], self.weight.shape[4]) | |
bias_re = self.bias.reshape(self.bias.shape[0] * self.bias.shape[1]) | |
out = F.conv2d(input=input_re, weight=weight_re, bias=bias_re, groups=self.weight.shape[0]) | |
return out.reshape(input_.shape[0], self.weight.shape[1], input_.shape[2], input_.shape[3]) | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, | |
padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * 4) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class ResNetBackbone(nn.Module): | |
def __init__(self, lda_out_channels, in_chn, block, layers, num_classes=1000): | |
super(ResNetBackbone, self).__init__() | |
self.inplanes = 64 | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) | |
self.bn1 = nn.BatchNorm2d(64) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, 64, layers[0]) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) | |
# local distortion aware module | |
self.lda1_pool = nn.Sequential( | |
nn.Conv2d(256, 16, kernel_size=1, stride=1, padding=0, bias=False), | |
nn.AvgPool2d(7, stride=7), | |
) | |
self.lda1_fc = nn.Linear(16 * 64, lda_out_channels) | |
self.lda2_pool = nn.Sequential( | |
nn.Conv2d(512, 32, kernel_size=1, stride=1, padding=0, bias=False), | |
nn.AvgPool2d(7, stride=7), | |
) | |
self.lda2_fc = nn.Linear(32 * 16, lda_out_channels) | |
self.lda3_pool = nn.Sequential( | |
nn.Conv2d(1024, 64, kernel_size=1, stride=1, padding=0, bias=False), | |
nn.AvgPool2d(7, stride=7), | |
) | |
self.lda3_fc = nn.Linear(64 * 4, lda_out_channels) | |
self.lda4_pool = nn.AvgPool2d(7, stride=7) | |
self.lda4_fc = nn.Linear(2048, in_chn - lda_out_channels * 3) | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, math.sqrt(2. / n)) | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
# initialize | |
nn.init.kaiming_normal_(self.lda1_pool._modules['0'].weight.data) | |
nn.init.kaiming_normal_(self.lda2_pool._modules['0'].weight.data) | |
nn.init.kaiming_normal_(self.lda3_pool._modules['0'].weight.data) | |
nn.init.kaiming_normal_(self.lda1_fc.weight.data) | |
nn.init.kaiming_normal_(self.lda2_fc.weight.data) | |
nn.init.kaiming_normal_(self.lda3_fc.weight.data) | |
nn.init.kaiming_normal_(self.lda4_fc.weight.data) | |
def _make_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(self.inplanes, planes * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(planes * block.expansion), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.maxpool(x) | |
x = self.layer1(x) | |
# the same effect as lda operation in the paper, but save much more memory | |
lda_1 = self.lda1_fc(self.lda1_pool(x).reshape(x.size(0), -1)) | |
x = self.layer2(x) | |
lda_2 = self.lda2_fc(self.lda2_pool(x).reshape(x.size(0), -1)) | |
x = self.layer3(x) | |
lda_3 = self.lda3_fc(self.lda3_pool(x).reshape(x.size(0), -1)) | |
x = self.layer4(x) | |
lda_4 = self.lda4_fc(self.lda4_pool(x).reshape(x.size(0), -1)) | |
vec = torch.cat((lda_1, lda_2, lda_3, lda_4), 1) | |
out = {} | |
out['hyper_in_feat'] = x | |
out['target_in_vec'] = vec | |
return out | |
def resnet50_backbone(lda_out_channels, in_chn, pretrained=False, **kwargs): | |
"""Constructs a ResNet-50 model_hyper. | |
Args: | |
pretrained (bool): If True, returns a model_hyper pre-trained on ImageNet | |
""" | |
model = ResNetBackbone(lda_out_channels, in_chn, Bottleneck, [3, 4, 6, 3], **kwargs) | |
if pretrained: | |
save_model = model_zoo.load_url(model_urls['resnet50']) | |
model_dict = model.state_dict() | |
state_dict = {k: v for k, v in save_model.items() if k in model_dict.keys()} | |
model_dict.update(state_dict) | |
model.load_state_dict(model_dict) | |
else: | |
model.apply(weights_init_xavier) | |
return model | |
def weights_init_xavier(m): | |
classname = m.__class__.__name__ | |
# print(classname) | |
# if isinstance(m, nn.Conv2d): | |
if classname.find('Conv') != -1: | |
init.kaiming_normal_(m.weight.data) | |
elif classname.find('Linear') != -1: | |
init.kaiming_normal_(m.weight.data) | |
elif classname.find('BatchNorm2d') != -1: | |
init.uniform_(m.weight.data, 1.0, 0.02) | |
init.constant_(m.bias.data, 0.0) | |