import json from pathlib import Path import gradio as gr import numpy as np from dotenv import load_dotenv from fastapi import FastAPI from fastapi.responses import HTMLResponse, StreamingResponse from fastrtc import ( AdditionalOutputs, ReplyOnPause, Stream, audio_to_bytes, get_twilio_turn_credentials, ) from gradio.utils import get_space from groq import AsyncClient cur_dir = Path(__file__).parent load_dotenv() groq_client = AsyncClient() async def transcribe(audio: tuple[int, np.ndarray]): transcript = await groq_client.audio.transcriptions.create( file=("audio-file.mp3", audio_to_bytes(audio)), model="whisper-large-v3-turbo", response_format="verbose_json", ) yield AdditionalOutputs(transcript.text) stream = Stream( ReplyOnPause(transcribe), modality="audio", mode="send", additional_outputs=[ gr.Textbox(label="Transcript"), ], additional_outputs_handler=lambda a, b: a + " " + b, rtc_configuration=get_twilio_turn_credentials() if get_space() else None, concurrency_limit=5 if get_space() else None, time_limit=90 if get_space() else None, ) app = FastAPI() stream.mount(app) @app.get("/transcript") def _(webrtc_id: str): async def output_stream(): async for output in stream.output_stream(webrtc_id): transcript = output.args[0] yield f"event: output\ndata: {transcript}\n\n" return StreamingResponse(output_stream(), media_type="text/event-stream") @app.get("/") def index(): rtc_config = get_twilio_turn_credentials() if get_space() else None html_content = (cur_dir / "index.html").read_text() html_content = html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config)) return HTMLResponse(content=html_content) if __name__ == "__main__": import os if (mode := os.getenv("MODE")) == "UI": stream.ui.launch(server_port=7860, server_name="0.0.0.0") elif mode == "PHONE": stream.fastphone(host="0.0.0.0", port=7860) else: import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)