File size: 4,619 Bytes
0704e01
 
7e9882f
0704e01
 
 
 
 
 
7e9882f
0704e01
 
 
 
 
 
7e9882f
0704e01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e9882f
0704e01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import asyncio
import base64
import json
from pathlib import Path

import gradio as gr
import numpy as np
import openai
from dotenv import load_dotenv
from fastapi.responses import HTMLResponse, StreamingResponse
from fastrtc import (
    AdditionalOutputs,
    AsyncStreamHandler,
    Stream,
    get_twilio_turn_credentials,
)
from gradio.utils import get_space
from openai.types.beta.realtime import ResponseAudioTranscriptDoneEvent

load_dotenv()

cur_dir = Path(__file__).parent

SAMPLE_RATE = 24000


class OpenAIHandler(AsyncStreamHandler):
    def __init__(
        self,
    ) -> None:
        super().__init__(
            expected_layout="mono",
            output_sample_rate=SAMPLE_RATE,
            output_frame_size=480,
            input_sample_rate=SAMPLE_RATE,
        )
        self.connection = None
        self.connected = asyncio.Event()
        self.output_queue = asyncio.Queue()

    def copy(self):
        return OpenAIHandler()

    async def _initialize_connection(
        self,
    ):
        """Connect to realtime API. Run forever in separate thread to keep connection open."""
        self.client = openai.AsyncOpenAI()
        async with self.client.beta.realtime.connect(
            model="gpt-4o-mini-realtime-preview-2024-12-17"
        ) as conn:
            await conn.session.update(
                session={"turn_detection": {"type": "server_vad"}}
            )
            self.connection = conn
            self.connected.set()
            async for event in self.connection:
                if event.type == "response.audio_transcript.done":
                    await self.output_queue.put(AdditionalOutputs(event))
                if event.type == "response.audio.delta":
                    await self.output_queue.put(
                        (
                            self.output_sample_rate,
                            np.frombuffer(
                                base64.b64decode(event.delta), dtype=np.int16
                            ).reshape(1, -1),
                        ),
                    )

    async def receive(self, frame: tuple[int, np.ndarray]) -> None:
        if not self.connection:
            await self.fetch_args()
            asyncio.create_task(self._initialize_connection())
            await self.connected.wait()
        try:
            _, array = frame
            array = array.squeeze()
            audio_message = base64.b64encode(array.tobytes()).decode("utf-8")
            await self.connection.input_audio_buffer.append(audio=audio_message)  # type: ignore
        except Exception as e:
            # print traceback
            print(f"Error in receive: {str(e)}")
            import traceback

            traceback.print_exc()

    async def emit(self) -> tuple[int, np.ndarray] | AdditionalOutputs | None:
        if not self.connection:
            return None
        return await self.output_queue.get()

    def reset_state(self):
        """Reset connection state for new recording session"""
        self.connection = None
        self.args_set.clear()
        self.connected.clear()

    async def shutdown(self) -> None:
        if self.connection:
            await self.connection.close()
            self.reset_state()


def update_chatbot(chatbot: list[dict], response: ResponseAudioTranscriptDoneEvent):
    chatbot.append({"role": "assistant", "content": response.transcript})
    return chatbot


chatbot = gr.Chatbot(type="messages")
latest_message = gr.Textbox(type="text", visible=False)
stream = Stream(
    OpenAIHandler(),
    mode="send-receive",
    modality="audio",
    additional_inputs=[chatbot],
    additional_outputs=[chatbot],
    additional_outputs_handler=update_chatbot,
    rtc_configuration=get_twilio_turn_credentials() if get_space() else None,
    concurrency_limit=20 if get_space() else None,
)


@stream.get("/")
async def _():
    rtc_config = get_twilio_turn_credentials() if get_space() else None
    html_content = (cur_dir / "index.html").read_text()
    html_content = html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config))
    return HTMLResponse(content=html_content)


@stream.get("/outputs")
def _(webrtc_id: str):
    async def output_stream():
        import json

        async for output in stream.output_stream(webrtc_id):
            s = json.dumps({"role": "assistant", "content": output.args[0].transcript})
            yield f"event: output\ndata: {s}\n\n"

    return StreamingResponse(output_stream(), media_type="text/event-stream")


if __name__ == "__main__":
    import uvicorn

    uvicorn.run(stream, host="0.0.0.0", port=7860)