eternalBlissard's picture
Update app.py
e8e1392 verified
raw
history blame
3.69 kB
import gradio as gr
import subprocess
import os
import ffmpeg
# import pymedia.audio.acodec as acodec
# import pymedia.muxer as muxer
import random
import string
import spaces
from openai import OpenAI
import os
import re
from math import floor
import subprocess
from gradio_client import Client, handle_file
ACCESS_TOKEN = os.getenv("HF_TOKEN")
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
clientsub = Client("eternalBlissard/Simplify-Video-Zero")
# val = None
@spaces.GPU(duration=1)
def random_name_generator():
length = random.randint(10, 15) # Random length between 10 and 15
characters = string.ascii_letters + string.digits # All alphanumeric characters
random_name = ''.join(random.choice(characters) for _ in range(length))
return random_name
# Example usage:
# print(random_name_generator())
def subtitle_it(subtitle_str):
# Regular expression to extract time and text
pattern = re.compile(
r'\[(\d{2}):(\d{2})\.(\d{3})\s*-->\s*(\d{2}):(\d{2})\.(\d{3})\]\s*(.*)'
)
# List to hold subtitle entries as tuples: (start_time, end_time, text)
subtitles = []
subtitle_str = subtitle_str.decode('utf-8') # or replace 'utf-8' with the appropriate encoding if needed
max_second = 0 # To determine the size of the list L
sub_string = ""
# Parse each line
for line in subtitle_str.strip().split('\n'):
match = pattern.match(line)
if match:
(
start_min, start_sec, start_ms,
end_min, end_sec, end_ms,
text
) = match.groups()
# Convert start and end times to total seconds
sub_string+=text
# Update maximum second
else:
print(f"Line didn't match pattern: {line}")
return sub_string
# Initialize list L with empty strings
def respond(
message,
history: list[tuple[str, str]],
reprocess,
system_message,
max_tokens,
temperature,
top_p,
):
# global val
# if ((val is None) or reprocess):
subtitles = clientsub.predict(
inputVideo={"video":handle_file(system_message)},
api_name="/predict"
)
val = subtitle_it(subtitles)
# print(val)
# reprocess-=1
messages = [{"role": "system", "content": "Answer by using the transcript"+val}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat.completions.create(
model="Qwen/Qwen2.5-72B-Instruct",
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
messages=messages,
):
token = message.choices[0].delta.content
response += token
yield response
chatbot = gr.Chatbot(height=600)
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Video(value=None, label="System message"),
gr.Slider(minimum=0, maximum=1, value=1, step=1, label="Reprocess"),
gr.Slider(minimum=1, maximum=4098, value=1024, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P",
),
],
fill_height=True,
chatbot=chatbot
)
if __name__ == "__main__":
demo.launch()