emilylearning
commited on
Commit
·
5e6d549
1
Parent(s):
2760c29
Add model dict & set up instructions
Browse files- .gitignore +2 -1
- README.md +7 -0
- app.py +19 -14
.gitignore
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
venv_sce/*
|
2 |
-
.DS_Store
|
|
|
|
1 |
venv_sce/*
|
2 |
+
.DS_Store
|
3 |
+
.ipynb_checkpoints/*
|
README.md
CHANGED
@@ -12,4 +12,11 @@ pinned: false
|
|
12 |
To link arXiv paper to this demo, reference below:
|
13 |
models: https://huggingface.co/emilylearning/selection-induced-collider-bias
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
|
|
12 |
To link arXiv paper to this demo, reference below:
|
13 |
models: https://huggingface.co/emilylearning/selection-induced-collider-bias
|
14 |
|
15 |
+
# Setup env:
|
16 |
+
```
|
17 |
+
python3 -m venv venv_sce
|
18 |
+
source venv_sce/bin/activate
|
19 |
+
pip install -r requirements.txt
|
20 |
+
```
|
21 |
+
|
22 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
app.py
CHANGED
@@ -8,9 +8,21 @@ import random
|
|
8 |
from matplotlib.ticker import MaxNLocator
|
9 |
from transformers import pipeline
|
10 |
|
11 |
-
MODEL_NAMES = ["bert-base-uncased", "roberta-base", "bert-large-uncased", "roberta-large"]
|
12 |
OWN_MODEL_NAME = 'add-a-model'
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
DECIMAL_PLACES = 1
|
15 |
EPS = 1e-5 # to avoid /0 errors
|
16 |
|
@@ -136,10 +148,7 @@ GENDERED_LIST = [
|
|
136 |
|
137 |
# %%
|
138 |
# Fire up the models
|
139 |
-
models =
|
140 |
-
|
141 |
-
for bert_like in MODEL_NAMES:
|
142 |
-
models[bert_like] = pipeline("fill-mask", model=bert_like)
|
143 |
|
144 |
# %%
|
145 |
|
@@ -391,12 +400,11 @@ with demo:
|
|
391 |
|
392 |
|
393 |
gr.Markdown("B) Pick a pre-loaded BERT-family model of interest on the right.")
|
394 |
-
gr.Markdown(f"Or C) select `{OWN_MODEL_NAME}`, then add the
|
395 |
|
396 |
with gr.Row():
|
397 |
model_name = gr.Radio(
|
398 |
-
MODEL_NAMES
|
399 |
-
type="value",
|
400 |
label="B) BERT-like model.",
|
401 |
)
|
402 |
own_model_name = gr.Textbox(
|
@@ -412,7 +420,6 @@ with demo:
|
|
412 |
to_normalize = gr.Dropdown(
|
413 |
["False", "True"],
|
414 |
label="D) Normalize model's predictions to only the gendered ones?",
|
415 |
-
type="index",
|
416 |
)
|
417 |
place_holder = gr.Textbox(
|
418 |
label="E) Special token place-holder",
|
@@ -420,7 +427,6 @@ with demo:
|
|
420 |
n_fit = gr.Dropdown(
|
421 |
list(range(1, 5)),
|
422 |
label="F) Degree of polynomial fit",
|
423 |
-
type="value",
|
424 |
)
|
425 |
|
426 |
gr.Markdown(
|
@@ -433,16 +439,15 @@ with demo:
|
|
433 |
)
|
434 |
|
435 |
gr.Markdown("## Outputs!")
|
436 |
-
#gr.Markdown("Scroll down and 'Hit Submit'!")
|
437 |
with gr.Row():
|
438 |
btn = gr.Button("Hit submit to generate predictions!")
|
439 |
|
440 |
with gr.Row():
|
441 |
sample_text = gr.Textbox(
|
442 |
-
|
443 |
with gr.Row():
|
444 |
-
female_fig = gr.Plot(
|
445 |
-
male_fig = gr.Plot(
|
446 |
with gr.Row():
|
447 |
df = gr.Dataframe(
|
448 |
show_label=True,
|
|
|
8 |
from matplotlib.ticker import MaxNLocator
|
9 |
from transformers import pipeline
|
10 |
|
|
|
11 |
OWN_MODEL_NAME = 'add-a-model'
|
12 |
|
13 |
+
MODEL_NAME_DICT = {
|
14 |
+
"roberta-large": "RoBERTa-large",
|
15 |
+
"bert-large-uncased": "BERT-large",
|
16 |
+
"roberta-base": "RoBERTa-base",
|
17 |
+
"bert-base-uncased": "BERT-base",
|
18 |
+
"olm/olm-roberta-base-oct-2022": "OLM_RoBERTa-base",
|
19 |
+
OWN_MODEL_NAME: "Your model's"
|
20 |
+
}
|
21 |
+
MODEL_NAMES = list(MODEL_NAME_DICT.keys())
|
22 |
+
|
23 |
+
# MODEL_NAMES = ["bert-base-uncased", "roberta-base", "bert-large-uncased", "roberta-large"]
|
24 |
+
# OWN_MODEL_NAME = 'add-a-model'
|
25 |
+
|
26 |
DECIMAL_PLACES = 1
|
27 |
EPS = 1e-5 # to avoid /0 errors
|
28 |
|
|
|
148 |
|
149 |
# %%
|
150 |
# Fire up the models
|
151 |
+
models = {m : pipeline("fill-mask", model=m) for m in MODEL_NAMES if m != OWN_MODEL_NAME}
|
|
|
|
|
|
|
152 |
|
153 |
# %%
|
154 |
|
|
|
400 |
|
401 |
|
402 |
gr.Markdown("B) Pick a pre-loaded BERT-family model of interest on the right.")
|
403 |
+
gr.Markdown(f"Or C) select `{OWN_MODEL_NAME}`, then add the name of any other Hugging Face model that supports the [fill-mask](https://huggingface.co/models?pipeline_tag=fill-mask) task on the right (note: this may take some time to load).")
|
404 |
|
405 |
with gr.Row():
|
406 |
model_name = gr.Radio(
|
407 |
+
MODEL_NAMES,
|
|
|
408 |
label="B) BERT-like model.",
|
409 |
)
|
410 |
own_model_name = gr.Textbox(
|
|
|
420 |
to_normalize = gr.Dropdown(
|
421 |
["False", "True"],
|
422 |
label="D) Normalize model's predictions to only the gendered ones?",
|
|
|
423 |
)
|
424 |
place_holder = gr.Textbox(
|
425 |
label="E) Special token place-holder",
|
|
|
427 |
n_fit = gr.Dropdown(
|
428 |
list(range(1, 5)),
|
429 |
label="F) Degree of polynomial fit",
|
|
|
430 |
)
|
431 |
|
432 |
gr.Markdown(
|
|
|
439 |
)
|
440 |
|
441 |
gr.Markdown("## Outputs!")
|
|
|
442 |
with gr.Row():
|
443 |
btn = gr.Button("Hit submit to generate predictions!")
|
444 |
|
445 |
with gr.Row():
|
446 |
sample_text = gr.Textbox(
|
447 |
+
label="Output text: Sample of text fed to model")
|
448 |
with gr.Row():
|
449 |
+
female_fig = gr.Plot()
|
450 |
+
male_fig = gr.Plot()
|
451 |
with gr.Row():
|
452 |
df = gr.Dataframe(
|
453 |
show_label=True,
|