elismasilva's picture
decreased number of steps for LCM examples
2ea4396
import torch
import spaces
from diffusers import ControlNetUnionModel, AutoencoderKL
import gradio as gr
from pipeline.mod_controlnet_tile_sr_sdxl import StableDiffusionXLControlNetTileSRPipeline
from pipeline.util import (
SAMPLERS,
create_hdr_effect,
progressive_upscale,
select_scheduler,
torch_gc,
)
device = "cuda"
MODELS = {"RealVisXL 5 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
"RealVisXL 5": "SG161222/RealVisXL_V5.0"
}
class Pipeline:
def __init__(self):
self.pipe = None
self.controlnet = None
self.vae = None
self.last_loaded_model = None
def load_model(self, model_id):
if model_id != self.last_loaded_model:
print(f"\n--- Loading model: {model_id} ---")
if self.pipe is not None:
self.pipe.to("cpu")
del self.pipe
self.pipe = None
del self.controlnet
self.controlnet = None
del self.vae
self.vae = None
torch_gc()
self.controlnet = ControlNetUnionModel.from_pretrained(
"brad-twinkl/controlnet-union-sdxl-1.0-promax", torch_dtype=torch.float16
).to(device=device)
self.vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to(device=device)
self.pipe = StableDiffusionXLControlNetTileSRPipeline.from_pretrained(
MODELS[model_id], controlnet=self.controlnet, vae=self.vae, torch_dtype=torch.float16, variant="fp16"
).to(device=device)
self.pipe.enable_model_cpu_offload()
self.pipe.enable_vae_tiling()
self.pipe.enable_vae_slicing()
self.last_loaded_model = model_id
print(f"Model {model_id} loaded.")
def __call__(self, *args, **kwargs):
return self.pipe(*args, **kwargs)
# region functions
@spaces.GPU(duration=120)
def predict(
image,
model_id,
prompt,
negative_prompt,
resolution,
hdr,
num_inference_steps,
denoising_strenght,
controlnet_strength,
tile_gaussian_sigma,
scheduler,
guidance_scale,
max_tile_size,
tile_weighting_method,
progress=gr.Progress(track_tqdm=True),
):
# Load model if changed
load_model(model_id)
# Set selected scheduler
print(f"Using scheduler: {scheduler}...")
pipeline.pipe.scheduler = select_scheduler(pipeline.pipe, scheduler)
# Get current image size
original_height = image.height
original_width = image.width
print(f"Current resolution: H:{original_height} x W:{original_width}")
# Pre-upscale image for tiling
control_image = create_hdr_effect(image, hdr)
image = progressive_upscale(image, resolution)
image = create_hdr_effect(image, hdr)
# Update target height and width
target_height = image.height
target_width = image.width
print(f"Target resolution: H:{target_height} x W:{target_width}")
print(f"Applied HDR effect: {True if hdr > 0 else False}")
# Calculate overlap size
normal_tile_overlap, border_tile_overlap = pipeline.pipe.calculate_overlap(target_width, target_height)
# Image generation
print("Diffusion kicking in... almost done, coffee's on you!")
image = pipeline(
image=image,
control_image=control_image,
control_mode=[6],
controlnet_conditioning_scale=float(controlnet_strength),
prompt=prompt,
negative_prompt=negative_prompt,
normal_tile_overlap=normal_tile_overlap,
border_tile_overlap=border_tile_overlap,
height=target_height,
width=target_width,
original_size=(original_width, original_height),
target_size=(target_width, target_height),
guidance_scale=guidance_scale,
strength=float(denoising_strenght),
tile_weighting_method=tile_weighting_method,
max_tile_size=max_tile_size,
tile_gaussian_sigma=float(tile_gaussian_sigma),
num_inference_steps=num_inference_steps,
)["images"][0]
return image
def clear_result():
return gr.update(value=None)
def load_model(model_name, on_load=False):
global pipeline # Declare pipeline as global
if on_load and 'pipeline' not in globals(): # Prevent reload page
pipeline = Pipeline() # Create pipeline inside the function
pipeline.load_model(model_name) # Load the initial model
elif pipeline is not None and not on_load:
pipeline.load_model(model_name) # Switch model
def set_maximum_resolution(max_tile_size, current_value):
max_scale = 8 # <- you can try increase it to 12x, 16x if you wish!
maximum_value = max_tile_size * max_scale
if current_value > maximum_value:
return gr.update(maximum=maximum_value, value=maximum_value)
return gr.update(maximum=maximum_value)
def select_tile_weighting_method(tile_weighting_method):
return gr.update(visible=True if tile_weighting_method=="Gaussian" else False)
# endregion
css = """
body {
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
margin: 0;
padding: 0;
}
.gradio-container {
border-radius: 15px;
padding: 30px 40px;
box-shadow: 0 8px 30px rgba(0, 0, 0, 0.3);
margin: 40px 340px;
}
.gradio-container h1 {
text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.2);
}
.fillable {
width: 100% !important;
max-width: unset !important;
}
#examples_container {
margin: auto;
width: 90%;
}
#examples_row {
justify-content: center;
}
#tips_row{
padding-left: 20px;
}
.sidebar {
border-radius: 10px;
padding: 10px;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
}
.sidebar .toggle-button {
background: linear-gradient(90deg, #34d399, #10b981) !important;
border: none;
padding: 12px 24px;
text-transform: uppercase;
font-weight: bold;
letter-spacing: 1px;
border-radius: 5px;
cursor: pointer;
transition: transform 0.2s ease-in-out;
}
.toggle-button:hover {
transform: scale(1.05);
}
"""
title = """<h1 align="center">MoD ControlNet Tile Upscaler for SDXL🤗</h1>
<div style="display: flex; flex-direction: column; justify-content: center; align-items: center; text-align: center; overflow:hidden;">
<span>This project implements the <a href="https://arxiv.org/pdf/2302.02412">📜 MoD (Mixture-of-Diffusers)</a> tiled diffusion technique and combines it with SDXL's ControlNet Tile process.</span>
<span>💻 <a href="https://github.com/DEVAIEXP/mod-control-tile-upscaler-sdxl">GitHub Code</a></span>
<span>🚀 <b>Controlnet Union Power!</b> Check out the model: <a href="https://huggingface.co/xinsir/controlnet-union-sdxl-1.0">Controlnet Union</a></span>
<span>🎨 <b>RealVisXL V5.0 for Stunning Visuals!</b> Explore it here: <a href="https://huggingface.co/SG161222/RealVisXL_V5.0">RealVisXL</a></span>
</div>
"""
tips = """
### Method
This project proposes an enhanced image upscaling method that leverages ControlNet Tile and Mixture-of-Diffusers techniques, integrating tile diffusion directly into the denoising process within the latent space.
Let's compare our method with conventional ControlNet Tile upscaling:
**Conventional ControlNet Tile:**
* Processes tiles in pixel space, potentially leading to edge artifacts during fusion.
* Processes each tile sequentially, increasing overall execution time (e.g., 16 tiles x 3 min = 48 min).
* Pixel space fusion using masks (e.g., Gaussian) can result in visible seams.
* Fixed or adaptively sized tiles and overlap can vary, causing inconsistencies.
**Proposed Method (MoD ControlNet Tile Upscaler):**
* Processes tiles in latent space, enabling smoother fusion and mitigating edge artifacts.
* Processes all tiles in parallel during denoising, drastically reducing execution time.
* Latent space fusion with dynamically calculated weights ensures seamless transitions between tiles.
* Tile size and overlap are dynamically adjusted based on the upscaling scale. For scales below 4x, fixed overlap maintains consistency.
"""
about = """
📧 **Contact**
<br>
If you have any questions or suggestions, feel free to send your question to <b>[email protected]</b>.
"""
with gr.Blocks(css=css, theme=gr.themes.Ocean(), title="MoD ControlNet Tile Upscaler") as app:
gr.Markdown(title)
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image", sources=["upload"], height=500)
with gr.Column():
result = gr.Image(
label="Generated Image", show_label=True, format="png", interactive=False, scale=1, height=500, min_width=670
)
with gr.Row():
gr.HTML("<div style='color: red;'>Users are getting the 'ZeroGPU worker error' because the execution time on Zero GPU for non-Pro users is 120s. I reduced the number of steps to 18 in the LCM examples to avoid this error, however this will result in low quality in the final result. It is better to run this application locally or duplicate the environment for a paid account. If you are not a Pro account, run the LCM sampler examples on the RealVisXL_V5.0_Lightning model. For best results use the UniPC sampler and RealVisXL_V5.0 model examples.</div>")
with gr.Row():
with gr.Accordion("Input Prompt", open=False):
with gr.Column():
prompt = gr.Textbox(
lines=2,
label="Prompt",
placeholder="Default prompt for image",
value="high-quality, noise-free edges, high quality, 4k, hd, 8k",
)
with gr.Column():
negative_prompt = gr.Textbox(
lines=2,
label="Negative Prompt (Optional)",
placeholder="e.g., blurry, low resolution, artifacts, poor details",
value="blurry, pixelated, noisy, low resolution, artifacts, poor details",
)
with gr.Row():
generate_button = gr.Button("Generate", variant="primary")
with gr.Column(scale=1):
with gr.Row(elem_id="tips_row"):
gr.Markdown(tips)
with gr.Sidebar(label="Parameters", open=True):
with gr.Row(elem_id="parameters_row"):
gr.Markdown("### General parameters")
model = gr.Dropdown(
label="Model", choices=list(MODELS.keys()), value=list(MODELS.keys())[0]
)
tile_weighting_method = gr.Dropdown(
label="Tile Weighting Method", choices=["Cosine", "Gaussian"], value="Cosine"
)
tile_gaussian_sigma = gr.Slider(label="Gaussian Sigma", minimum=0.05, maximum=1.0, step=0.01, value=0.3, visible=False)
max_tile_size = gr.Dropdown(label="Max. Tile Size", choices=[1024, 1280], value=1024)
with gr.Row():
resolution = gr.Slider(minimum=128, maximum=8192, value=2048, step=128, label="Resolution")
num_inference_steps = gr.Slider(minimum=2, maximum=100, value=30, step=1, label="Inference Steps")
guidance_scale = gr.Slider(minimum=1, maximum=20, value=6, step=0.1, label="Guidance Scale")
denoising_strength = gr.Slider(minimum=0.1, maximum=1, value=0.6, step=0.01, label="Denoising Strength")
controlnet_strength = gr.Slider(
minimum=0.1, maximum=2.0, value=1.0, step=0.05, label="ControlNet Strength"
)
hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
with gr.Row():
scheduler = gr.Dropdown(
label="Sampler",
choices=list(SAMPLERS.keys()),
value="UniPC",
)
with gr.Accordion(label="Example Images", open=True):
with gr.Row(elem_id="examples_row"):
with gr.Column(scale=12, elem_id="examples_container"):
gr.Examples(
examples=[
[ "./examples/1.jpg",
"RealVisXL 5 Lightning",
prompt.value,
negative_prompt.value,
4096,
0.0,
18,
0.35,
1.0,
0.3,
"LCM",
4,
1024,
"Cosine"
],
[ "./examples/1.jpg",
"RealVisXL 5",
prompt.value,
negative_prompt.value,
4096,
0.0,
35,
0.65,
1.0,
0.3,
"UniPC",
4,
1024,
"Cosine"
],
[ "./examples/2.jpg",
"RealVisXL 5 Lightning",
prompt.value,
negative_prompt.value,
4096,
0.5,
18,
0.35,
1.0,
0.3,
"LCM",
4,
1024,
"Cosine"
],
[ "./examples/2.jpg",
"RealVisXL 5",
prompt.value,
negative_prompt.value,
4096,
0.5,
35,
0.65,
1.0,
0.3,
"UniPC",
4,
1024,
"Cosine"
],
[ "./examples/3.jpg",
"RealVisXL 5 Lightning",
prompt.value,
negative_prompt.value,
5120,
0.5,
18,
0.35,
1.0,
0.3,
"LCM",
4,
1280,
"Gaussian"
],
[ "./examples/3.jpg",
"RealVisXL 5",
prompt.value,
negative_prompt.value,
5120,
0.5,
50,
0.65,
1.0,
0.3,
"UniPC",
4,
1280,
"Gaussian"
],
[ "./examples/4.jpg",
"RealVisXL 5 Lightning",
prompt.value,
negative_prompt.value,
8192,
0.1,
18,
0.35,
1.0,
0.3,
"LCM",
4,
1024,
"Gaussian"
],
[ "./examples/4.jpg",
"RealVisXL 5",
prompt.value,
negative_prompt.value,
8192,
0.1,
50,
0.5,
1.0,
0.3,
"UniPC",
4,
1024,
"Gaussian"
],
[ "./examples/5.jpg",
"RealVisXL 5 Lightning",
prompt.value,
negative_prompt.value,
8192,
0.3,
18,
0.35,
1.0,
0.3,
"LCM",
4,
1024,
"Cosine"
],
[ "./examples/5.jpg",
"RealVisXL 5",
prompt.value,
negative_prompt.value,
8192,
0.3,
50,
0.5,
1.0,
0.3,
"UniPC",
4,
1024,
"Cosine"
]
],
inputs=[
input_image,
model,
prompt,
negative_prompt,
resolution,
hdr,
num_inference_steps,
denoising_strength,
controlnet_strength,
tile_gaussian_sigma,
scheduler,
guidance_scale,
max_tile_size,
tile_weighting_method,
],
fn=predict,
outputs=result,
cache_examples=False,
)
max_tile_size.select(fn=set_maximum_resolution, inputs=[max_tile_size, resolution], outputs=resolution)
tile_weighting_method.change(fn=select_tile_weighting_method, inputs=tile_weighting_method, outputs=tile_gaussian_sigma)
generate_button.click(
fn=clear_result,
inputs=None,
outputs=result,
).then(
fn=predict,
inputs=[
input_image,
model,
prompt,
negative_prompt,
resolution,
hdr,
num_inference_steps,
denoising_strength,
controlnet_strength,
tile_gaussian_sigma,
scheduler,
guidance_scale,
max_tile_size,
tile_weighting_method,
],
outputs=result,
)
gr.Markdown(about)
app.load(fn=load_model, inputs=[model, gr.State(value=True)], outputs=None, concurrency_limit=1) # Load initial model on app load
app.launch(share=False)