Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,223 Bytes
32e89fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
# Copyright 2025 The DEVAIEXP Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import cv2
import numpy as np
import torch
from PIL import Image
from gradio.themes import Default
import gradio as gr
MAX_SEED = np.iinfo(np.int32).max
SAMPLERS = {
"DDIM": ("DDIMScheduler", {}),
"DDIM trailing": ("DDIMScheduler", {"timestep_spacing": "trailing"}),
"DDPM": ("DDPMScheduler", {}),
"DEIS": ("DEISMultistepScheduler", {}),
"Heun": ("HeunDiscreteScheduler", {}),
"Heun Karras": ("HeunDiscreteScheduler", {"use_karras_sigmas": True}),
"Euler": ("EulerDiscreteScheduler", {}),
"Euler trailing": ("EulerDiscreteScheduler", {"timestep_spacing": "trailing", "prediction_type": "sample"}),
"Euler Ancestral": ("EulerAncestralDiscreteScheduler", {}),
"Euler Ancestral trailing": ("EulerAncestralDiscreteScheduler", {"timestep_spacing": "trailing"}),
"DPM++ 1S": ("DPMSolverMultistepScheduler", {"solver_order": 1}),
"DPM++ 1S Karras": ("DPMSolverMultistepScheduler", {"solver_order": 1, "use_karras_sigmas": True}),
"DPM++ 2S": ("DPMSolverSinglestepScheduler", {"use_karras_sigmas": False}),
"DPM++ 2S Karras": ("DPMSolverSinglestepScheduler", {"use_karras_sigmas": True}),
"DPM++ 2M": ("DPMSolverMultistepScheduler", {"use_karras_sigmas": False}),
"DPM++ 2M Karras": ("DPMSolverMultistepScheduler", {"use_karras_sigmas": True}),
"DPM++ 2M SDE": ("DPMSolverMultistepScheduler", {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}),
"DPM++ 2M SDE Karras": (
"DPMSolverMultistepScheduler",
{"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"},
),
"DPM++ 3M": ("DPMSolverMultistepScheduler", {"solver_order": 3}),
"DPM++ 3M Karras": ("DPMSolverMultistepScheduler", {"solver_order": 3, "use_karras_sigmas": True}),
"DPM++ SDE": ("DPMSolverSDEScheduler", {"use_karras_sigmas": False}),
"DPM++ SDE Karras": ("DPMSolverSDEScheduler", {"use_karras_sigmas": True}),
"DPM2": ("KDPM2DiscreteScheduler", {}),
"DPM2 Karras": ("KDPM2DiscreteScheduler", {"use_karras_sigmas": True}),
"DPM2 Ancestral": ("KDPM2AncestralDiscreteScheduler", {}),
"DPM2 Ancestral Karras": ("KDPM2AncestralDiscreteScheduler", {"use_karras_sigmas": True}),
"LMS": ("LMSDiscreteScheduler", {}),
"LMS Karras": ("LMSDiscreteScheduler", {"use_karras_sigmas": True}),
"UniPC": ("UniPCMultistepScheduler", {}),
"UniPC Karras": ("UniPCMultistepScheduler", {"use_karras_sigmas": True}),
"PNDM": ("PNDMScheduler", {}),
"Euler EDM": ("EDMEulerScheduler", {}),
"Euler EDM Karras": ("EDMEulerScheduler", {"use_karras_sigmas": True}),
"DPM++ 2M EDM": (
"EDMDPMSolverMultistepScheduler",
{"solver_order": 2, "solver_type": "midpoint", "final_sigmas_type": "zero", "algorithm_type": "dpmsolver++"},
),
"DPM++ 2M EDM Karras": (
"EDMDPMSolverMultistepScheduler",
{
"use_karras_sigmas": True,
"solver_order": 2,
"solver_type": "midpoint",
"final_sigmas_type": "zero",
"algorithm_type": "dpmsolver++",
},
),
"DPM++ 2M Lu": ("DPMSolverMultistepScheduler", {"use_lu_lambdas": True}),
"DPM++ 2M Ef": ("DPMSolverMultistepScheduler", {"euler_at_final": True}),
"DPM++ 2M SDE Lu": ("DPMSolverMultistepScheduler", {"use_lu_lambdas": True, "algorithm_type": "sde-dpmsolver++"}),
"DPM++ 2M SDE Ef": ("DPMSolverMultistepScheduler", {"algorithm_type": "sde-dpmsolver++", "euler_at_final": True}),
"LCM": ("LCMScheduler", {}),
"LCM trailing": ("LCMScheduler", {"timestep_spacing": "trailing"}),
"TCD": ("TCDScheduler", {}),
"TCD trailing": ("TCDScheduler", {"timestep_spacing": "trailing"}),
}
class Platinum(Default):
def __init__(
self,
):
super().__init__(
font = (
gr.themes.GoogleFont("Karla"), 'Segoe UI Emoji', 'Public Sans', 'system-ui', 'sans-serif'
)
)
self.name = "Diffusers"
super().set(
block_border_width='1px',
block_border_width_dark='1px',
block_info_text_size='13px',
block_info_text_weight='450',
block_info_text_color='#474a50',
block_label_background_fill='*background_fill_secondary',
block_label_text_color='*neutral_700',
block_title_text_color='black',
block_title_text_weight='600',
block_background_fill='#fcfcfc',
body_background_fill='*background_fill_secondary',
body_text_color='black',
background_fill_secondary='#f8f8f8',
border_color_accent='*primary_50',
border_color_primary='#ededed',
color_accent='#7367f0',
color_accent_soft='#fcfcfc',
panel_background_fill='#fcfcfc',
section_header_text_weight='600',
checkbox_background_color='*background_fill_secondary',
input_background_fill='white',
input_placeholder_color='*neutral_300',
loader_color = '#7367f0',
slider_color='#7367f0',
table_odd_background_fill='*neutral_100',
button_small_radius='*radius_sm',
button_primary_background_fill='linear-gradient(to bottom right, #7367f0, #9c93f4)',
button_primary_background_fill_hover='linear-gradient(to bottom right, #9c93f4, #9c93f4)',
button_primary_background_fill_hover_dark='linear-gradient(to bottom right, #5e50ee, #5e50ee)',
button_cancel_background_fill='linear-gradient(to bottom right, #fc0379, #ff88ac)',
button_cancel_background_fill_dark='linear-gradient(to bottom right, #dc2626, #b91c1c)',
button_cancel_background_fill_hover='linear-gradient(to bottom right, #f592c9, #f592c9)',
button_cancel_background_fill_hover_dark='linear-gradient(to bottom right, #dc2626, #dc2626)',
button_primary_border_color='#5949ed',
button_primary_text_color='white',
button_cancel_text_color='white',
button_cancel_text_color_dark='#dc2626',
button_cancel_border_color='#f04668',
button_cancel_border_color_dark='#dc2626',
button_cancel_border_color_hover='#fe6565',
button_cancel_border_color_hover_dark='#dc2626',
form_gap_width='1px',
layout_gap='5px'
)
def select_scheduler(pipe, selected_sampler):
import diffusers
scheduler_class_name, add_kwargs = SAMPLERS[selected_sampler]
config = pipe.scheduler.config
scheduler = getattr(diffusers, scheduler_class_name)
if selected_sampler in ("LCM", "LCM trailing"):
config = {
x: config[x] for x in config if x not in ("skip_prk_steps", "interpolation_type", "use_karras_sigmas")
}
elif selected_sampler in ("TCD", "TCD trailing"):
config = {x: config[x] for x in config if x not in ("skip_prk_steps")}
return scheduler.from_config(config, **add_kwargs)
def calculate_overlap(width, height, base_overlap=128):
"""
Calculates dynamic overlap based on the image's aspect ratio.
Args:
width (int): Width of the image in pixels.
height (int): Height of the image in pixels.
base_overlap (int, optional): Base overlap value in pixels. Defaults to 128.
Returns:
tuple: A tuple containing:
- row_overlap (int): Overlap between tiles in consecutive rows.
- col_overlap (int): Overlap between tiles in consecutive columns.
"""
ratio = height / width
if ratio < 1: # Image is wider than tall
return base_overlap // 2, base_overlap
else: # Image is taller than wide
return base_overlap, base_overlap * 2
# def calculate_overlap(width, height, base_overlap=128, scale=4):
# """
# Calculates dynamic overlap based on the image's aspect ratio and resolution.
# For scales less than 4, the overlap is fixed at 64, 128 (or 128, 256).
# For scales 4 or greater, the overlap is adjusted proportionally to the scale.
# Args:
# width (int): Width of the image in pixels.
# height (int): Height of the image in pixels.
# base_overlap (int, optional): Base overlap value in pixels. Defaults to 128.
# scale (int, optional): Scale factor for calculating the overlap. Defaults to 4.
# Returns:
# tuple: A tuple containing:
# - row_overlap (int): Overlap between tiles in consecutive rows.
# - col_overlap (int): Overlap between tiles in consecutive columns.
# """
# # Define the base scale (4)
# base_scale = 4
# # If scale is less than 4, use fixed overlap values
# if scale < base_scale:
# ratio = height / width
# if ratio < 1: # Image is wider than tall
# return base_overlap // 2, base_overlap
# else: # Image is taller than wide
# return base_overlap, base_overlap * 2
# else:
# # For scales 4 or greater, adjust overlap proportionally
# scaling_factor = scale / base_scale
# base_overlap = int(base_overlap * base_scale)
# #base_overlap = int(base_overlap * scaling_factor)
# ratio = height / width
# if ratio < 1: # Image is wider than tall
# return base_overlap // 2, base_overlap
# else: # Image is taller than wide
# return base_overlap, base_overlap * 2
# This function was copied and adapted from https://huggingface.co/spaces/gokaygokay/TileUpscalerV2, licensed under Apache 2.0.
def progressive_upscale(input_image, target_resolution, steps=3):
"""
Progressively upscales an image to the target resolution in multiple steps.
Args:
input_image (PIL.Image.Image): The input image to be upscaled.
target_resolution (int): The target resolution (width or height) in pixels.
steps (int, optional): The number of upscaling steps. Defaults to 3.
Returns:
PIL.Image.Image: The upscaled image at the target resolution.
"""
current_image = input_image.convert("RGB")
current_size = max(current_image.size)
# Upscale in multiple steps
for _ in range(steps):
if current_size >= target_resolution:
break
scale_factor = min(2, target_resolution / current_size)
new_size = (int(current_image.width * scale_factor), int(current_image.height * scale_factor))
current_image = current_image.resize(new_size, Image.LANCZOS)
current_size = max(current_image.size)
# Final resize to exact target resolution
if current_size != target_resolution:
aspect_ratio = current_image.width / current_image.height
if current_image.width > current_image.height:
new_size = (target_resolution, int(target_resolution / aspect_ratio))
else:
new_size = (int(target_resolution * aspect_ratio), target_resolution)
current_image = current_image.resize(new_size, Image.LANCZOS)
return current_image
# This function was copied and adapted from https://huggingface.co/spaces/gokaygokay/TileUpscalerV2, licensed under Apache 2.0.
def create_hdr_effect(original_image, hdr):
"""
Applies an HDR (High Dynamic Range) effect to an image based on the specified intensity.
Args:
original_image (PIL.Image.Image): The original image to which the HDR effect will be applied.
hdr (float): The intensity of the HDR effect, ranging from 0 (no effect) to 1 (maximum effect).
Returns:
PIL.Image.Image: The image with the HDR effect applied.
"""
if hdr == 0:
return original_image # No effect applied if hdr is 0
# Convert the PIL image to a NumPy array in BGR format (OpenCV format)
cv_original = cv2.cvtColor(np.array(original_image), cv2.COLOR_RGB2BGR)
# Define scaling factors for creating multiple exposures
factors = [
1.0 - 0.9 * hdr,
1.0 - 0.7 * hdr,
1.0 - 0.45 * hdr,
1.0 - 0.25 * hdr,
1.0,
1.0 + 0.2 * hdr,
1.0 + 0.4 * hdr,
1.0 + 0.6 * hdr,
1.0 + 0.8 * hdr,
]
# Generate multiple exposure images by scaling the original image
images = [cv2.convertScaleAbs(cv_original, alpha=factor) for factor in factors]
# Merge the images using the Mertens algorithm to create an HDR effect
merge_mertens = cv2.createMergeMertens()
hdr_image = merge_mertens.process(images)
# Convert the HDR image to 8-bit format (0-255 range)
hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype("uint8")
# Convert the image back to RGB format and return as a PIL image
return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))
def torch_gc():
if torch.cuda.is_available():
with torch.cuda.device("cuda"):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
gc.collect()
def quantize_8bit(unet):
if unet is None:
return
from peft.tuners.tuners_utils import BaseTunerLayer
dtype = unet.dtype
unet.to(torch.float8_e4m3fn)
for module in unet.modules(): # revert lora modules to prevent errors with fp8
if isinstance(module, BaseTunerLayer):
module.to(dtype)
if hasattr(unet, "encoder_hid_proj"): # revert ip adapter modules to prevent errors with fp8
if unet.encoder_hid_proj is not None:
for module in unet.encoder_hid_proj.modules():
module.to(dtype)
torch_gc()
|