File size: 19,511 Bytes
32e89fe
 
e6c446b
32e89fe
 
274c3ad
32e89fe
fa3cf34
e6c446b
 
76bf5ed
 
32e89fe
 
 
6138235
 
 
76bf5ed
 
 
 
 
 
32e89fe
76bf5ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6138235
76bf5ed
 
 
32e89fe
76bf5ed
 
 
 
 
 
 
 
32e89fe
 
e8cf629
32e89fe
 
6138235
32e89fe
 
 
 
 
 
 
 
 
 
 
 
 
 
dc528d7
 
76bf5ed
32e89fe
 
76bf5ed
32e89fe
 
 
 
 
 
 
274c3ad
 
 
32e89fe
 
fa3cf34
 
32e89fe
 
 
 
 
 
 
 
76bf5ed
274c3ad
 
32e89fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cbf75a
32e89fe
 
 
 
 
76bf5ed
 
 
 
 
 
 
 
32e89fe
 
 
 
 
 
 
 
 
 
 
 
 
fa3cf34
 
32e89fe
 
 
fa3cf34
32e89fe
 
 
fa3cf34
32e89fe
fa3cf34
32e89fe
 
 
6138235
32e89fe
 
 
 
 
 
 
 
 
 
 
 
fa3cf34
32e89fe
 
 
 
fa3cf34
 
32e89fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cec84ff
32e89fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa3cf34
32e89fe
 
 
 
 
76bf5ed
32e89fe
 
 
 
dc528d7
 
32e89fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc528d7
76bf5ed
dc528d7
32e89fe
cb6f2d9
32e89fe
 
 
e6c446b
32e89fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6c446b
32e89fe
2099bb6
6138235
2099bb6
 
 
 
dc528d7
2099bb6
 
 
 
 
 
 
 
32e89fe
6138235
32e89fe
 
 
 
 
 
 
 
 
 
 
 
dc528d7
 
6138235
dc528d7
 
 
 
 
 
 
 
 
 
 
 
 
32e89fe
6138235
32e89fe
 
 
 
 
 
 
 
 
 
 
 
 
dc528d7
6138235
dc528d7
 
 
 
 
 
 
 
 
 
 
 
 
32e89fe
6138235
32e89fe
 
 
 
 
 
 
 
 
 
 
 
 
dc528d7
6138235
dc528d7
 
 
 
 
 
 
 
 
 
 
 
 
32e89fe
6138235
32e89fe
 
 
 
 
 
 
 
 
 
 
 
 
dc528d7
6138235
dc528d7
 
 
 
 
 
 
 
 
 
 
 
 
32e89fe
6138235
32e89fe
 
 
 
 
 
 
 
 
 
 
 
dc528d7
32e89fe
 
 
6138235
32e89fe
 
 
 
 
 
1a23072
 
32e89fe
 
 
 
 
6138235
32e89fe
2099bb6
32e89fe
 
 
6138235
76bf5ed
32e89fe
 
 
 
 
 
 
 
6138235
32e89fe
 
 
 
 
 
 
 
 
 
 
 
 
76bf5ed
32e89fe
 
76bf5ed
32e89fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
import torch
import spaces
from diffusers import ControlNetUnionModel, AutoencoderKL
import gradio as gr

from pipeline.mod_controlnet_tile_sr_sdxl import StableDiffusionXLControlNetTileSRPipeline, calculate_overlap
from pipeline.util import (
    SAMPLERS,    
    create_hdr_effect,    
    progressive_upscale,    
    select_scheduler,
    torch_gc,    
)

device = "cuda"
MODELS = {"RealVisXL 5 Lightning": "SG161222/RealVisXL_V5.0_Lightning", 
          "RealVisXL 5": "SG161222/RealVisXL_V5.0"
         }
class Pipeline:
    def __init__(self):
        self.pipe = None
        self.controlnet = None
        self.vae = None
        self.last_loaded_model = None

    def load_model(self, model_id):
        if model_id != self.last_loaded_model:
            print(f"\n--- Loading model: {model_id} ---")
            if self.pipe is not None:                
                self.pipe.to("cpu")                
                del self.pipe
                self.pipe = None
                del self.controlnet
                self.controlnet = None
                del self.vae
                self.vae = None                
                torch_gc()            
            
            self.controlnet = ControlNetUnionModel.from_pretrained(
                    "brad-twinkl/controlnet-union-sdxl-1.0-promax", torch_dtype=torch.float16
                ).to(device=device)
            self.vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to(device=device)

            self.pipe = StableDiffusionXLControlNetTileSRPipeline.from_pretrained(
                MODELS[model_id], controlnet=self.controlnet, vae=self.vae, torch_dtype=torch.float16, variant="fp16"
            ).to(device=device)

            self.pipe.enable_model_cpu_offload()
            self.pipe.enable_vae_tiling()
            self.pipe.enable_vae_slicing()
            self.last_loaded_model = model_id
            print(f"Model {model_id} loaded.")

    def __call__(self, *args, **kwargs):
        return self.pipe(*args, **kwargs)

# region functions
@spaces.GPU(duration=120)
def predict(
    image,
    model_id,
    prompt,
    negative_prompt,
    resolution,
    hdr,
    num_inference_steps,
    denoising_strenght,
    controlnet_strength,
    tile_gaussian_sigma,
    scheduler,
    guidance_scale,
    max_tile_size,
    tile_weighting_method,
    progress=gr.Progress(track_tqdm=True),
):
    # Load model if changed
    load_model(model_id)
    
    # Set selected scheduler
    print(f"Using scheduler: {scheduler}...")
    pipeline.pipe.scheduler = select_scheduler(pipeline.pipe, scheduler)

    # Get current image size
    original_height = image.height
    original_width = image.width
    print(f"Current resolution: H:{original_height} x W:{original_width}")

    # Pre-upscale image for tiling
    control_image = create_hdr_effect(image, hdr)
    image = progressive_upscale(image, resolution)
    image = create_hdr_effect(image, hdr)

    # Update target height and width
    target_height = image.height
    target_width = image.width
    print(f"Target resolution: H:{target_height} x W:{target_width}")
    print(f"Applied HDR effect: {True if hdr > 0 else False}")

    # Calculate overlap size
    normal_tile_overlap, border_tile_overlap = calculate_overlap(target_width, target_height)

    # Image generation
    print("Diffusion kicking in... almost done, coffee's on you!")
    image = pipeline(
        image=image,
        control_image=control_image,
        control_mode=[6],
        controlnet_conditioning_scale=float(controlnet_strength),
        prompt=prompt,
        negative_prompt=negative_prompt,
        normal_tile_overlap=normal_tile_overlap,
        border_tile_overlap=border_tile_overlap,
        height=target_height,
        width=target_width,
        original_size=(original_width, original_height),
        target_size=(target_width, target_height),
        guidance_scale=guidance_scale,        
        strength=float(denoising_strenght),
        tile_weighting_method=tile_weighting_method,
        max_tile_size=max_tile_size,
        tile_gaussian_sigma=float(tile_gaussian_sigma),
        num_inference_steps=num_inference_steps,
    )["images"][0]
    
    return image

def clear_result():
    return gr.update(value=None)

def load_model(model_name, on_load=False):
    global pipeline  # Declare pipeline as global
    if on_load and 'pipeline' not in globals(): # Prevent reload page
        pipeline = Pipeline()  # Create pipeline inside the function
        pipeline.load_model(model_name) # Load the initial model
    elif pipeline is not None and not on_load:
        pipeline.load_model(model_name) # Switch model       
    
def set_maximum_resolution(max_tile_size, current_value):
    max_scale = 8  # <- you can try increase it to 12x, 16x if you wish!
    maximum_value = max_tile_size * max_scale
    if current_value > maximum_value:
        return gr.update(maximum=maximum_value, value=maximum_value)
    return gr.update(maximum=maximum_value)

def select_tile_weighting_method(tile_weighting_method):
    return gr.update(visible=True if tile_weighting_method=="Gaussian" else False)

# endregion

css = """
body {    
    font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;    
    margin: 0;
    padding: 0;
}
.gradio-container {    
    border-radius: 15px;
    padding: 30px 40px;
    box-shadow: 0 8px 30px rgba(0, 0, 0, 0.3);
    margin: 40px 340px;    
}
.gradio-container h1 {    
    text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.2);
}
.fillable {
    width: 100% !important;
    max-width: unset !important;
}
#examples_container {
    margin: auto;
    width: 90%;
}
#examples_row {
    justify-content: center;
}
#tips_row{    
    padding-left: 20px;
}
.sidebar {    
    border-radius: 10px;
    padding: 10px;
    box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
}
.sidebar .toggle-button {    
    border: none;    
    padding: 12px 24px;
    text-transform: uppercase;
    font-weight: bold;
    letter-spacing: 1px;
    border-radius: 5px;
    cursor: pointer;
    transition: transform 0.2s ease-in-out;
}
.toggle-button:hover {
    transform: scale(1.05);
}
"""
title = """<h1 align="center">MoD ControlNet Tile Upscaler for SDXLπŸ€—</h1>
           <div style="display: flex; flex-direction: column; justify-content: center; align-items: center; text-align: center; overflow:hidden;">
                <span>This project implements the <a href="https://arxiv.org/pdf/2408.06072">πŸ“œ MoD (Mixture-of-Diffusers)</a> tiled diffusion technique and combines it with SDXL's ControlNet Tile process.</span>
                <span>πŸ’» <a href="https://github.com/DEVAIEXP/mod-control-tile-upscaler-sdxl">GitHub Code</a></span>
                <span>πŸš€ <b>Controlnet Union Power!</b> Check out the model: <a href="https://huggingface.co/xinsir/controlnet-union-sdxl-1.0">Controlnet Union</a></span>
                <span>🎨 <b>RealVisXL V5.0 for Stunning Visuals!</b> Explore it here: <a href="https://huggingface.co/SG161222/RealVisXL_V5.0">RealVisXL</a></span>
           </div>
           """

tips = """
### Method
This project proposes an enhanced image upscaling method that leverages ControlNet Tile and Mixture-of-Diffusers techniques, integrating tile diffusion directly into the denoising process within the latent space.

Let's compare our method with conventional ControlNet Tile upscaling:

**Conventional ControlNet Tile:**
* Processes tiles in pixel space, potentially leading to edge artifacts during fusion.
* Processes each tile sequentially, increasing overall execution time (e.g., 16 tiles x 3 min = 48 min).
* Pixel space fusion using masks (e.g., Gaussian) can result in visible seams.
* Fixed or adaptively sized tiles and overlap can vary, causing inconsistencies.

**Proposed Method (MoD ControlNet Tile Upscaler):**
* Processes tiles in latent space, enabling smoother fusion and mitigating edge artifacts.
* Processes all tiles in parallel during denoising, drastically reducing execution time.
* Latent space fusion with dynamically calculated weights ensures seamless transitions between tiles.
* Tile size and overlap are dynamically adjusted based on the upscaling scale. For scales below 4x, fixed overlap maintains consistency.

"""

about = """
πŸ“§ **Contact**
<br>
If you have any questions or suggestions, feel free to send your question to <b>[email protected]</b>.
"""

with gr.Blocks(css=css, theme=gr.themes.Ocean(), title="MoD ControlNet Tile Upscaler") as app:
    gr.Markdown(title)
    with gr.Row():
        with gr.Column(scale=3):                        
            with gr.Row():
                with gr.Column():
                    input_image = gr.Image(type="pil", label="Input Image", sources=["upload"], height=500)
                with gr.Column():
                    result = gr.Image(
                        label="Generated Image", show_label=True, format="png", interactive=False, scale=1, height=500, min_width=670
                    )
            with gr.Row():
                gr.HTML("<div style='color: red;'>If you are not a Pro account, run the LCM sampler examples on the RealVisXL_V5.0_Lightning model. For best results use the UniPC sampler and RealVisXL_V5.0 model examples.</div>")
            with gr.Row():
                with gr.Accordion("Input Prompt", open=False):
                    with gr.Column():
                        prompt = gr.Textbox(
                            lines=2,
                            label="Prompt",
                            placeholder="Default prompt for image",
                            value="high-quality, noise-free edges, high quality, 4k, hd, 8k",
                        )
                    with gr.Column():
                        negative_prompt = gr.Textbox(
                            lines=2,
                            label="Negative Prompt (Optional)",
                            placeholder="e.g., blurry, low resolution, artifacts, poor details",
                            value="blurry, pixelated, noisy, low resolution, artifacts, poor details",
                        )
            with gr.Row():
                generate_button = gr.Button("Generate", variant="primary")
        with gr.Column(scale=1):
            with gr.Row(elem_id="tips_row"):
                gr.Markdown(tips)
    with gr.Sidebar(label="Parameters", open=True):
        with gr.Row(elem_id="parameters_row"):
            gr.Markdown("### General parameters")
            model = gr.Dropdown(
                label="Model", choices=list(MODELS.keys()), value=list(MODELS.keys())[0]
            )
            tile_weighting_method = gr.Dropdown(
                label="Tile Weighting Method", choices=["Cosine", "Gaussian"], value="Cosine"
            )
            tile_gaussian_sigma = gr.Slider(label="Gaussian Sigma", minimum=0.05, maximum=1.0, step=0.01, value=0.3, visible=False)
            max_tile_size = gr.Dropdown(label="Max. Tile Size", choices=[1024, 1280], value=1024)
        with gr.Row():
            resolution = gr.Slider(minimum=128, maximum=8192, value=2048, step=128, label="Resolution")
            num_inference_steps = gr.Slider(minimum=2, maximum=100, value=30, step=1, label="Inference Steps")
            guidance_scale = gr.Slider(minimum=1, maximum=20, value=6, step=0.1, label="Guidance Scale")
            denoising_strength = gr.Slider(minimum=0.1, maximum=1, value=0.6, step=0.01, label="Denoising Strength")
            controlnet_strength = gr.Slider(
                minimum=0.1, maximum=2.0, value=1.0, step=0.05, label="ControlNet Strength"
            )            
            hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
        with gr.Row():
            scheduler = gr.Dropdown(
                label="Sampler",
                choices=list(SAMPLERS.keys()),
                value="UniPC",
            )
    with gr.Accordion(label="Example Images", open=True):
        with gr.Row(elem_id="examples_row"):
            with gr.Column(scale=12, elem_id="examples_container"):
                gr.Examples(
                    examples=[
                        [   "./examples/1.jpg",
                            "RealVisXL 5 Lightning",
                            prompt.value,
                            negative_prompt.value,
                            4096,
                            0.0,
                            25,
                            0.35,
                            1.0,
                            0.3,
                            "LCM",
                            4,
                            1024,
                            "Cosine"
                        ],
                        [   "./examples/1.jpg",
                            "RealVisXL 5",
                            prompt.value,
                            negative_prompt.value,
                            4096,
                            0.0,
                            35,
                            0.65,
                            1.0,
                            0.3,
                            "UniPC",
                            4,
                            1024,
                            "Cosine"
                        ],
                        [   "./examples/2.jpg",
                            "RealVisXL 5 Lightning",
                            prompt.value,
                            negative_prompt.value,
                            4096,
                            0.5,
                            25,
                            0.35,
                            1.0,
                            0.3,
                            "LCM",
                            4,
                            1024,
                            "Cosine"
                        ],
                        [   "./examples/2.jpg",
                            "RealVisXL 5",                       
                            prompt.value,
                            negative_prompt.value,
                            4096,
                            0.5,
                            35,
                            0.65,
                            1.0,
                            0.3,
                            "UniPC",
                            4,
                            1024,
                            "Cosine"
                        ],
                        [   "./examples/3.jpg",
                            "RealVisXL 5 Lightning",
                            prompt.value,
                            negative_prompt.value,
                            5120,
                            0.5,
                            25,
                            0.35,
                            1.0,
                            0.3,
                            "LCM",
                            4,
                            1280,
                            "Gaussian"
                        ],
                        [   "./examples/3.jpg",
                            "RealVisXL 5",
                            prompt.value,
                            negative_prompt.value,
                            5120,
                            0.5,
                            50,
                            0.65,
                            1.0,
                            0.3,
                            "UniPC",
                            4,
                            1280,
                            "Gaussian"
                        ],
                        [   "./examples/4.jpg",
                            "RealVisXL 5 Lightning",
                            prompt.value,
                            negative_prompt.value,
                            8192,
                            0.1,
                            25,
                            0.35,
                            1.0,
                            0.3,
                            "LCM",
                            4,
                            1024,
                            "Gaussian"
                        ],
                        [   "./examples/4.jpg",
                            "RealVisXL 5",
                            prompt.value,
                            negative_prompt.value,
                            8192,
                            0.1,
                            50,
                            0.5,
                            1.0,
                            0.3,
                            "UniPC",
                            4,
                            1024,
                            "Gaussian"
                        ],
                        [   "./examples/5.jpg",
                            "RealVisXL 5 Lightning",
                            prompt.value,
                            negative_prompt.value,
                            8192,
                            0.3,
                            25,
                            0.35,
                            1.0,
                            0.3,
                            "LCM",
                            4,
                            1024,
                            "Cosine"
                        ],
                        [   "./examples/5.jpg",
                            "RealVisXL 5",
                            prompt.value,
                            negative_prompt.value,
                            8192,
                            0.3,
                            50,
                            0.5,
                            1.0,
                            0.3,
                            "UniPC",
                            4,
                            1024,
                            "Cosine"
                        ]                        
                    ],
                    inputs=[
                        input_image,
                        model,
                        prompt,
                        negative_prompt,
                        resolution,
                        hdr,
                        num_inference_steps,
                        denoising_strength,
                        controlnet_strength,
                        tile_gaussian_sigma,
                        scheduler,
                        guidance_scale,
                        max_tile_size,
                        tile_weighting_method,
                    ],                    
                    fn=predict,
                    outputs=result,
                    cache_examples=False,
                )

    max_tile_size.select(fn=set_maximum_resolution, inputs=[max_tile_size, resolution], outputs=resolution)
    tile_weighting_method.change(fn=select_tile_weighting_method, inputs=tile_weighting_method, outputs=tile_gaussian_sigma)    
    
    generate_button.click(
        fn=clear_result,
        inputs=None,
        outputs=result,
    ).then(
        fn=predict,
        inputs=[
            input_image,
            model,
            prompt,
            negative_prompt,
            resolution,
            hdr,
            num_inference_steps,
            denoising_strength,
            controlnet_strength,
            tile_gaussian_sigma,
            scheduler,
            guidance_scale,
            max_tile_size,
            tile_weighting_method,
        ],
        outputs=result,     
    )
    gr.Markdown(about)
    app.load(fn=load_model, inputs=[model, gr.State(value=True)], outputs=None, concurrency_limit=1) # Load initial model on app load
app.launch(share=False)