File size: 91,804 Bytes
32e89fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
# Copyright 2025 DEVAIEXP and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from enum import Enum
from typing import Any, Dict, List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from transformers import (
    CLIPTextModel,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
)

from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import (
    FromSingleFileMixin,
    StableDiffusionXLLoraLoaderMixin,
    TextualInversionLoaderMixin,
)
from diffusers.models import (
    AutoencoderKL,
    ControlNetModel,
    ControlNetUnionModel,
    MultiControlNetModel,
    UNet2DConditionModel,
)
from diffusers.models.attention_processor import (
    AttnProcessor2_0,
    XFormersAttnProcessor,
)
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
from diffusers.schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler
from diffusers.utils import (
    USE_PEFT_BACKEND,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.utils.import_utils import is_invisible_watermark_available
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor

if is_invisible_watermark_available():
    from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker

from diffusers.utils import is_torch_xla_available

if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        # !pip install controlnet_aux
        from diffusers import (
            StableDiffusionXLControlNetUnionImg2ImgPipeline,
            ControlNetUnionModel,
            AutoencoderKL,
        )
        from diffusers.utils import load_image
        import torch
        from PIL import Image
        import numpy as np

        prompt = "A cat"
        # download an image
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky/cat.png"
        )
        # initialize the models and pipeline
        controlnet = ControlNetUnionModel.from_pretrained(
            "brad-twinkl/controlnet-union-sdxl-1.0-promax", torch_dtype=torch.float16
        )
        vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
        pipe = StableDiffusionXLControlNetUnionImg2ImgPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0",
            controlnet=controlnet,
            vae=vae,
            torch_dtype=torch.float16,
            variant="fp16",
        ).to("cuda")
        # `enable_model_cpu_offload` is not recommended due to multiple generations
        height = image.height
        width = image.width
        ratio = np.sqrt(1024.0 * 1024.0 / (width * height))
        # 3 * 3 upscale correspond to 16 * 3 multiply, 2 * 2 correspond to 16 * 2 multiply and so on.
        scale_image_factor = 3
        base_factor = 16
        factor = scale_image_factor * base_factor
        W, H = int(width * ratio) // factor * factor, int(height * ratio) // factor * factor
        image = image.resize((W, H))
        target_width = W // scale_image_factor
        target_height = H // scale_image_factor
        images = []
        crops_coords_list = [
            (0, 0),
            (0, width // 2),
            (height // 2, 0),
            (width // 2, height // 2),
            0,
            0,
            0,
            0,
            0,
        ]
        for i in range(scale_image_factor):
            for j in range(scale_image_factor):
                left = j * target_width
                top = i * target_height
                right = left + target_width
                bottom = top + target_height
                cropped_image = image.crop((left, top, right, bottom))
                cropped_image = cropped_image.resize((W, H))
                images.append(cropped_image)
        # set ControlNetUnion input
        result_images = []
        for sub_img, crops_coords in zip(images, crops_coords_list):
            new_width, new_height = W, H
            out = pipe(
                prompt=[prompt] * 1,
                image=sub_img,
                control_image=[sub_img],
                control_mode=[6],
                width=new_width,
                height=new_height,
                num_inference_steps=30,
                crops_coords_top_left=(W, H),
                target_size=(W, H),
                original_size=(W * 2, H * 2),
            )
            result_images.append(out.images[0])
        new_im = Image.new("RGB", (new_width * scale_image_factor, new_height * scale_image_factor))
        new_im.paste(result_images[0], (0, 0))
        new_im.paste(result_images[1], (new_width, 0))
        new_im.paste(result_images[2], (new_width * 2, 0))
        new_im.paste(result_images[3], (0, new_height))
        new_im.paste(result_images[4], (new_width, new_height))
        new_im.paste(result_images[5], (new_width * 2, new_height))
        new_im.paste(result_images[6], (0, new_height * 2))
        new_im.paste(result_images[7], (new_width, new_height * 2))
        new_im.paste(result_images[8], (new_width * 2, new_height * 2))
        ```
"""


# This function was copied and adapted from https://huggingface.co/spaces/gokaygokay/TileUpscalerV2, licensed under Apache 2.0.
def _adaptive_tile_size(image_size, base_tile_size=512, max_tile_size=1280):
    """
    Calculate the adaptive tile size based on the image dimensions, ensuring the tile
    respects the aspect ratio and stays within the specified size limits.
    """
    width, height = image_size
    aspect_ratio = width / height

    if aspect_ratio > 1:
        # Landscape orientation
        tile_width = min(width, max_tile_size)
        tile_height = min(int(tile_width / aspect_ratio), max_tile_size)
    else:
        # Portrait or square orientation
        tile_height = min(height, max_tile_size)
        tile_width = min(int(tile_height * aspect_ratio), max_tile_size)

    # Ensure the tile size is not smaller than the base_tile_size
    tile_width = max(tile_width, base_tile_size)
    tile_height = max(tile_height, base_tile_size)

    return tile_width, tile_height


# Copied and adapted from https://github.com/huggingface/diffusers/blob/main/examples/community/mixture_tiling.py
def _tile2pixel_indices(
    tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, image_width, image_height
):
    """Given a tile row and column numbers returns the range of pixels affected by that tiles in the overall image

    Returns a tuple with:
        - Starting coordinates of rows in pixel space
        - Ending coordinates of rows in pixel space
        - Starting coordinates of columns in pixel space
        - Ending coordinates of columns in pixel space
    """
    # Calculate initial indices
    px_row_init = 0 if tile_row == 0 else tile_row * (tile_height - tile_row_overlap)
    px_col_init = 0 if tile_col == 0 else tile_col * (tile_width - tile_col_overlap)

    # Calculate end indices
    px_row_end = px_row_init + tile_height
    px_col_end = px_col_init + tile_width

    # Ensure the last tile does not exceed the image dimensions
    px_row_end = min(px_row_end, image_height)
    px_col_end = min(px_col_end, image_width)

    return px_row_init, px_row_end, px_col_init, px_col_end


# Copied and adapted from https://github.com/huggingface/diffusers/blob/main/examples/community/mixture_tiling.py
def _tile2latent_indices(
    tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, image_width, image_height
):
    """Given a tile row and column numbers returns the range of latents affected by that tiles in the overall image

    Returns a tuple with:
        - Starting coordinates of rows in latent space
        - Ending coordinates of rows in latent space
        - Starting coordinates of columns in latent space
        - Ending coordinates of columns in latent space
    """
    # Get pixel indices
    px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices(
        tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, image_width, image_height
    )

    # Convert to latent space
    latent_row_init = px_row_init // 8
    latent_row_end = px_row_end // 8
    latent_col_init = px_col_init // 8
    latent_col_end = px_col_end // 8
    latent_height = image_height // 8
    latent_width = image_width // 8

    # Ensure the last tile does not exceed the latent dimensions
    latent_row_end = min(latent_row_end, latent_height)
    latent_col_end = min(latent_col_end, latent_width)

    return latent_row_init, latent_row_end, latent_col_init, latent_col_end


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
        return encoder_output.latent_dist.sample(generator)
    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
        return encoder_output.latent_dist.mode()
    elif hasattr(encoder_output, "latents"):
        return encoder_output.latents
    else:
        raise AttributeError("Could not access latents of provided encoder_output")

class TileWeightingMethod(Enum):
        """Mode in which the tile weights will be generated"""

        COSINE = "Cosine"
        GAUSSIAN = "Gaussian"

class StableDiffusionXLControlNetTileSRPipeline(
    DiffusionPipeline,
    StableDiffusionMixin,
    TextualInversionLoaderMixin,
    StableDiffusionXLLoraLoaderMixin,
    FromSingleFileMixin,
):
    r"""
    Pipeline for image-to-image generation using Stable Diffusion XL with ControlNet guidance.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        text_encoder_2 ([` CLIPTextModelWithProjection`]):
            Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
            specifically the
            [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
            variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        tokenizer_2 (`CLIPTokenizer`):
            Second Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        controlnet ([`ControlNetUnionModel`]):
            Provides additional conditioning to the unet during the denoising process.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
            Whether the `unet` requires an `aesthetic_score` condition to be passed during inference. Also see the
            config of `stabilityai/stable-diffusion-xl-refiner-1-0`.
        force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
            Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
            `stabilityai/stable-diffusion-xl-base-1-0`.
        add_watermarker (`bool`, *optional*):
            Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
            watermark output images. If not defined, it will default to True if the package is installed, otherwise no
            watermarker will be used.
    """

    model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
    _optional_components = [
        "tokenizer",
        "tokenizer_2",
        "text_encoder",
        "text_encoder_2",
    ]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        text_encoder_2: CLIPTextModelWithProjection,
        tokenizer: CLIPTokenizer,
        tokenizer_2: CLIPTokenizer,
        unet: UNet2DConditionModel,
        controlnet: ControlNetUnionModel,
        scheduler: KarrasDiffusionSchedulers,
        requires_aesthetics_score: bool = False,
        force_zeros_for_empty_prompt: bool = True,
        add_watermarker: Optional[bool] = None,
    ):
        super().__init__()

        if not isinstance(controlnet, ControlNetUnionModel):
            raise ValueError("Expected `controlnet` to be of type `ControlNetUnionModel`.")

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            unet=unet,
            controlnet=controlnet,
            scheduler=scheduler,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
        self.control_image_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
        )
        self.mask_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
        )
        add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()

        if add_watermarker:
            self.watermark = StableDiffusionXLWatermarker()
        else:
            self.watermark = None

        self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
        self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)

    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
    def encode_prompt(
        self,
        prompt: str,
        prompt_2: Optional[str] = None,
        device: Optional[torch.device] = None,
        num_images_per_prompt: int = 1,
        do_classifier_free_guidance: bool = True,
        negative_prompt: Optional[str] = None,
        negative_prompt_2: Optional[str] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        pooled_prompt_embeds: Optional[torch.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
        lora_scale: Optional[float] = None,
        clip_skip: Optional[int] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                used in both text-encoders
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            pooled_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
            lora_scale (`float`, *optional*):
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
        """
        device = device or self._execution_device
        
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if self.text_encoder is not None:
                if not USE_PEFT_BACKEND:
                    adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
                else:
                    scale_lora_layers(self.text_encoder, lora_scale)

            if self.text_encoder_2 is not None:
                if not USE_PEFT_BACKEND:
                    adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
                else:
                    scale_lora_layers(self.text_encoder_2, lora_scale)

        prompt = [prompt] if isinstance(prompt, str) else prompt

        if prompt is not None:
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # Define tokenizers and text encoders
        tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
        text_encoders = (
            [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
        )
        dtype = text_encoders[0].dtype
        if prompt_embeds is None:
            prompt_2 = prompt_2 or prompt
            prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2

            # textual inversion: process multi-vector tokens if necessary
            prompt_embeds_list = []
            prompts = [prompt, prompt_2]
            for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
                if isinstance(self, TextualInversionLoaderMixin):
                    prompt = self.maybe_convert_prompt(prompt, tokenizer)

                text_inputs = tokenizer(
                    prompt,
                    padding="max_length",
                    max_length=tokenizer.model_max_length,
                    truncation=True,
                    return_tensors="pt",
                )

                text_input_ids = text_inputs.input_ids
                untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

                if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                    text_input_ids, untruncated_ids
                ):
                    removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
                    logger.warning(
                        "The following part of your input was truncated because CLIP can only handle sequences up to"
                        f" {tokenizer.model_max_length} tokens: {removed_text}"
                    )
                text_encoder.to(dtype)
                prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)

                # We are only ALWAYS interested in the pooled output of the final text encoder
                if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2:
                    pooled_prompt_embeds = prompt_embeds[0]

                if clip_skip is None:
                    prompt_embeds = prompt_embeds.hidden_states[-2]
                else:
                    # "2" because SDXL always indexes from the penultimate layer.
                    prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]

                prompt_embeds_list.append(prompt_embeds)

            prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)

        # get unconditional embeddings for classifier free guidance
        zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
        if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
            negative_prompt_embeds = torch.zeros_like(prompt_embeds)
            negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
        elif do_classifier_free_guidance and negative_prompt_embeds is None:
            negative_prompt = negative_prompt or ""
            negative_prompt_2 = negative_prompt_2 or negative_prompt

            # normalize str to list
            negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
            negative_prompt_2 = (
                batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
            )

            uncond_tokens: List[str]
            if prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = [negative_prompt, negative_prompt_2]

            negative_prompt_embeds_list = []
            for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
                if isinstance(self, TextualInversionLoaderMixin):
                    negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)

                max_length = prompt_embeds.shape[1]
                uncond_input = tokenizer(
                    negative_prompt,
                    padding="max_length",
                    max_length=max_length,
                    truncation=True,
                    return_tensors="pt",
                )

                negative_prompt_embeds = text_encoder(
                    uncond_input.input_ids.to(device),
                    output_hidden_states=True,
                )

                # We are only ALWAYS interested in the pooled output of the final text encoder
                if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2:
                    negative_pooled_prompt_embeds = negative_prompt_embeds[0]
                negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]

                negative_prompt_embeds_list.append(negative_prompt_embeds)

            negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)

        if self.text_encoder_2 is not None:
            prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
        else:
            prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            if self.text_encoder_2 is not None:
                negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
            else:
                negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
            bs_embed * num_images_per_prompt, -1
        )
        if do_classifier_free_guidance:
            negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
                bs_embed * num_images_per_prompt, -1
            )

        if self.text_encoder is not None:
            if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        if self.text_encoder_2 is not None:
            if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder_2, lora_scale)

        return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        height,
        width,
        image,
        strength,
        num_inference_steps,
        normal_tile_overlap,
        border_tile_overlap,
        max_tile_size,
        tile_gaussian_sigma,
        tile_weighting_method,
        controlnet_conditioning_scale=1.0,
        control_guidance_start=0.0,
        control_guidance_end=1.0,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if strength < 0 or strength > 1:
            raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
        if num_inference_steps is None:
            raise ValueError("`num_inference_steps` cannot be None.")        
        elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
            raise ValueError(
                f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
                f" {type(num_inference_steps)}."
            )
        if normal_tile_overlap is None:
            raise ValueError("`normal_tile_overlap` cannot be None.")        
        elif not isinstance(normal_tile_overlap, int) or normal_tile_overlap < 64:
            raise ValueError(
                f"`normal_tile_overlap` has to be greater than 64 but is {normal_tile_overlap} of type"
                f" {type(normal_tile_overlap)}."
            )
        if border_tile_overlap is None:
            raise ValueError("`border_tile_overlap` cannot be None.")        
        elif not isinstance(border_tile_overlap, int) or border_tile_overlap < 128:
            raise ValueError(
                f"`border_tile_overlap` has to be greater than 128 but is {border_tile_overlap} of type"
                f" {type(border_tile_overlap)}."
            )
        if max_tile_size is None:
            raise ValueError("`max_tile_size` cannot be None.")        
        elif not isinstance(max_tile_size, int) or max_tile_size not in(1024, 1280):
            raise ValueError(
                f"`max_tile_size` has to be in 1024 or 1280 but is {max_tile_size} of type"
                f" {type(max_tile_size)}."
            )     
        if tile_gaussian_sigma is None:
            raise ValueError("`tile_gaussian_sigma` cannot be None.")        
        elif not isinstance(tile_gaussian_sigma, float) or tile_gaussian_sigma <= 0:
            raise ValueError(
                f"`tile_gaussian_sigma` has to be a positive float but is {tile_gaussian_sigma} of type"
                f" {type(tile_gaussian_sigma)}."
            )
        if tile_weighting_method is None:
            raise ValueError("`tile_weighting_method` cannot be None.")        
        elif not isinstance(tile_weighting_method, str) or tile_weighting_method not in [t.value for t in TileWeightingMethod]:
            raise ValueError(
                f"`tile_weighting_method` has to be a string in ({[t.value for t in TileWeightingMethod]}) but is {tile_weighting_method} of type"
                f" {type(tile_weighting_method)}."
            )
        
        # Check `image`
        is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
            self.controlnet, torch._dynamo.eval_frame.OptimizedModule
        )
        if (
            isinstance(self.controlnet, ControlNetModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, ControlNetModel)
        ):
            self.check_image(image, prompt)
        elif (
            isinstance(self.controlnet, ControlNetUnionModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, ControlNetUnionModel)
        ):
            self.check_image(image, prompt)
        else:
            assert False

        # Check `controlnet_conditioning_scale`
        if (
            isinstance(self.controlnet, ControlNetUnionModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, ControlNetUnionModel)
        ) or (
            isinstance(self.controlnet, MultiControlNetModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
        ):
            if not isinstance(controlnet_conditioning_scale, float):
                raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
        elif (
            isinstance(self.controlnet, MultiControlNetModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
        ):
            if isinstance(controlnet_conditioning_scale, list):
                if any(isinstance(i, list) for i in controlnet_conditioning_scale):
                    raise ValueError("A single batch of multiple conditionings are supported at the moment.")
            elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
                self.controlnet.nets
            ):
                raise ValueError(
                    "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
                    " the same length as the number of controlnets"
                )
        else:
            assert False

        if not isinstance(control_guidance_start, (tuple, list)):
            control_guidance_start = [control_guidance_start]

        if not isinstance(control_guidance_end, (tuple, list)):
            control_guidance_end = [control_guidance_end]

        if len(control_guidance_start) != len(control_guidance_end):
            raise ValueError(
                f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
            )

        for start, end in zip(control_guidance_start, control_guidance_end):
            if start >= end:
                raise ValueError(
                    f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
                )
            if start < 0.0:
                raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
            if end > 1.0:
                raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")

    # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.check_image
    def check_image(self, image, prompt):
        image_is_pil = isinstance(image, Image.Image)
        image_is_tensor = isinstance(image, torch.Tensor)
        image_is_np = isinstance(image, np.ndarray)
        image_is_pil_list = isinstance(image, list) and isinstance(image[0], Image.Image)
        image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
        image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)

        if (
            not image_is_pil
            and not image_is_tensor
            and not image_is_np
            and not image_is_pil_list
            and not image_is_tensor_list
            and not image_is_np_list
        ):
            raise TypeError(
                f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
            )

        if image_is_pil:
            image_batch_size = 1
        else:
            image_batch_size = len(image)

        if prompt is not None and isinstance(prompt, str):
            prompt_batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            prompt_batch_size = len(prompt)

        if image_batch_size != 1 and image_batch_size != prompt_batch_size:
            raise ValueError(
                f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
            )

    # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.prepare_image
    def prepare_control_image(
        self,
        image,
        width,
        height,
        batch_size,
        num_images_per_prompt,
        device,
        dtype,
        do_classifier_free_guidance=False,
        guess_mode=False,
    ):
        image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
        image_batch_size = image.shape[0]

        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            # image batch size is the same as prompt batch size
            repeat_by = num_images_per_prompt

        image = image.repeat_interleave(repeat_by, dim=0)

        image = image.to(device=device, dtype=dtype)

        if do_classifier_free_guidance and not guess_mode:
            image = torch.cat([image] * 2)

        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
    def get_timesteps(self, num_inference_steps, strength):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
        if hasattr(self.scheduler, "set_begin_index"):
            self.scheduler.set_begin_index(t_start * self.scheduler.order)

        return timesteps, num_inference_steps - t_start

    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.prepare_latents
    def prepare_latents(
        self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True
    ):
        if not isinstance(image, (torch.Tensor, Image.Image, list)):
            raise ValueError(
                f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
            )

        latents_mean = latents_std = None
        if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
            latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
        if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
            latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)

        # Offload text encoder if `enable_model_cpu_offload` was enabled
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.text_encoder_2.to("cpu")
            torch.cuda.empty_cache()

        image = image.to(device=device, dtype=dtype)

        batch_size = batch_size * num_images_per_prompt

        if image.shape[1] == 4:
            init_latents = image

        else:
            # make sure the VAE is in float32 mode, as it overflows in float16
            if self.vae.config.force_upcast:
                image = image.float()
                self.vae.to(dtype=torch.float32)

            if isinstance(generator, list) and len(generator) != batch_size:
                raise ValueError(
                    f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                    f" size of {batch_size}. Make sure the batch size matches the length of the generators."
                )

            elif isinstance(generator, list):
                if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
                    image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
                elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
                    raise ValueError(
                        f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
                    )

                init_latents = [
                    retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
                    for i in range(batch_size)
                ]
                init_latents = torch.cat(init_latents, dim=0)
            else:
                init_latents = retrieve_latents(self.vae.encode(image), generator=generator)

            if self.vae.config.force_upcast:
                self.vae.to(dtype)

            init_latents = init_latents.to(dtype)
            if latents_mean is not None and latents_std is not None:
                latents_mean = latents_mean.to(device=device, dtype=dtype)
                latents_std = latents_std.to(device=device, dtype=dtype)
                init_latents = (init_latents - latents_mean) * self.vae.config.scaling_factor / latents_std
            else:
                init_latents = self.vae.config.scaling_factor * init_latents

        if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
            # expand init_latents for batch_size
            additional_image_per_prompt = batch_size // init_latents.shape[0]
            init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
        elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
            raise ValueError(
                f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
            )
        else:
            init_latents = torch.cat([init_latents], dim=0)

        if add_noise:
            shape = init_latents.shape
            noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
            # get latents
            init_latents = self.scheduler.add_noise(init_latents, noise, timestep)

        latents = init_latents

        return latents

    # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids
    def _get_add_time_ids(
        self,
        original_size,
        crops_coords_top_left,
        target_size,
        aesthetic_score,
        negative_aesthetic_score,
        negative_original_size,
        negative_crops_coords_top_left,
        negative_target_size,
        dtype,
        text_encoder_projection_dim=None,
    ):
        if self.config.requires_aesthetics_score:
            add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
            add_neg_time_ids = list(
                negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)
            )
        else:
            add_time_ids = list(original_size + crops_coords_top_left + target_size)
            add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size)

        passed_add_embed_dim = (
            self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
        )
        expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features

        if (
            expected_add_embed_dim > passed_add_embed_dim
            and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
        ):
            raise ValueError(
                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
            )
        elif (
            expected_add_embed_dim < passed_add_embed_dim
            and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
        ):
            raise ValueError(
                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
            )
        elif expected_add_embed_dim != passed_add_embed_dim:
            raise ValueError(
                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
            )

        add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
        add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)

        return add_time_ids, add_neg_time_ids

    def _generate_cosine_weights(self, tile_width, tile_height, nbatches, device, dtype):
        """
        Generates cosine weights as a PyTorch tensor for blending tiles.

        Args:
            tile_width (int): Width of the tile in pixels.
            tile_height (int): Height of the tile in pixels.
            nbatches (int): Number of batches.
            device (torch.device): Device where the tensor will be allocated (e.g., 'cuda' or 'cpu').
            dtype (torch.dtype): Data type of the tensor (e.g., torch.float32).

        Returns:
            torch.Tensor: A tensor containing cosine weights for blending tiles, expanded to match batch and channel dimensions.
        """
        # Convert tile dimensions to latent space
        latent_width = tile_width // 8
        latent_height = tile_height // 8

        # Generate x and y coordinates in latent space
        x = np.arange(0, latent_width)
        y = np.arange(0, latent_height)

        # Calculate midpoints
        midpoint_x = (latent_width - 1) / 2
        midpoint_y = (latent_height - 1) / 2

        # Compute cosine probabilities for x and y
        x_probs = np.cos(np.pi * (x - midpoint_x) / latent_width)
        y_probs = np.cos(np.pi * (y - midpoint_y) / latent_height)

        # Create a 2D weight matrix using the outer product
        weights_np = np.outer(y_probs, x_probs)

        # Convert to a PyTorch tensor with the correct device and dtype
        weights_torch = torch.tensor(weights_np, device=device, dtype=dtype)

        # Expand for batch and channel dimensions
        tile_weights_expanded = torch.tile(weights_torch, (nbatches, self.unet.config.in_channels, 1, 1))

        return tile_weights_expanded

    def _generate_gaussian_weights(self, tile_width, tile_height, nbatches, device, dtype, sigma=0.05):
        """
        Generates Gaussian weights as a PyTorch tensor for blending tiles in latent space.

        Args:
            tile_width (int): Width of the tile in pixels.
            tile_height (int): Height of the tile in pixels.
            nbatches (int): Number of batches.
            device (torch.device): Device where the tensor will be allocated (e.g., 'cuda' or 'cpu').
            dtype (torch.dtype): Data type of the tensor (e.g., torch.float32).
            sigma (float, optional): Standard deviation of the Gaussian distribution. Controls the smoothness of the weights. Defaults to 0.05.

        Returns:
            torch.Tensor: A tensor containing Gaussian weights for blending tiles, expanded to match batch and channel dimensions.
        """
        # Convert tile dimensions to latent space
        latent_width = tile_width // 8
        latent_height = tile_height // 8

        # Generate Gaussian weights in latent space
        x = np.linspace(-1, 1, latent_width)
        y = np.linspace(-1, 1, latent_height)
        xx, yy = np.meshgrid(x, y)
        gaussian_weight = np.exp(-(xx**2 + yy**2) / (2 * sigma**2))

        # Convert to a PyTorch tensor with the correct device and dtype
        weights_torch = torch.tensor(gaussian_weight, device=device, dtype=dtype)

        # Expand for batch and channel dimensions
        weights_expanded = weights_torch.unsqueeze(0).unsqueeze(0)  # Add batch and channel dimensions
        weights_expanded = weights_expanded.expand(nbatches, -1, -1, -1)  # Expand to the number of batches

        return weights_expanded

    def _get_num_tiles(self, height, width, tile_height, tile_width, normal_tile_overlap, border_tile_overlap):
        """
        Calculates the number of tiles needed to cover an image, choosing the appropriate formula based on the
        ratio between the image size and the tile size.

        This function automatically selects between two formulas:
        1. A universal formula for typical cases (image-to-tile ratio <= 6:1).
        2. A specialized formula with border tile overlap for larger or atypical cases (image-to-tile ratio > 6:1).

        Args:
            height (int): Height of the image in pixels.
            width (int): Width of the image in pixels.
            tile_height (int): Height of each tile in pixels.
            tile_width (int): Width of each tile in pixels.
            normal_tile_overlap (int): Overlap between tiles in pixels for normal (non-border) tiles.
            border_tile_overlap (int): Overlap between tiles in pixels for border tiles.

        Returns:
            tuple: A tuple containing:
                - grid_rows (int): Number of rows in the tile grid.
                - grid_cols (int): Number of columns in the tile grid.

        Notes:
            - The function uses the universal formula (without border_tile_overlap) for typical cases where the
            image-to-tile ratio is 6:1 or smaller.
            - For larger or atypical cases (image-to-tile ratio > 6:1), it uses a specialized formula that includes
            border_tile_overlap to ensure complete coverage of the image, especially at the edges.
        """
        # Calculate the ratio between the image size and the tile size
        height_ratio = height / tile_height
        width_ratio = width / tile_width

        # If the ratio is greater than 6:1, use the formula with border_tile_overlap
        if height_ratio > 6 or width_ratio > 6:
            grid_rows = int(np.ceil((height - border_tile_overlap) / (tile_height - normal_tile_overlap))) + 1
            grid_cols = int(np.ceil((width - border_tile_overlap) / (tile_width - normal_tile_overlap))) + 1
        else:
            # Otherwise, use the universal formula
            grid_rows = int(np.ceil((height - normal_tile_overlap) / (tile_height - normal_tile_overlap)))
            grid_cols = int(np.ceil((width - normal_tile_overlap) / (tile_width - normal_tile_overlap)))

        return grid_rows, grid_cols
    
    def prepare_tiles(
        self,
        grid_rows,
        grid_cols,
        tile_weighting_method,
        tile_width,
        tile_height,
        normal_tile_overlap,
        border_tile_overlap,
        width,
        height,
        tile_sigma,
        batch_size,
        device,
        dtype,
    ):
        """
        Processes image tiles by dynamically adjusting overlap and calculating Gaussian or cosine weights.

        Args:
            grid_rows (int): Number of rows in the tile grid.
            grid_cols (int): Number of columns in the tile grid.
            tile_weighting_method (str): Method for weighting tiles. Options: "Gaussian" or "Cosine".
            tile_width (int): Width of each tile in pixels.
            tile_height (int): Height of each tile in pixels.
            normal_tile_overlap (int): Overlap between tiles in pixels for normal tiles.
            border_tile_overlap (int): Overlap between tiles in pixels for border tiles.
            width (int): Width of the image in pixels.
            height (int): Height of the image in pixels.
            tile_sigma (float): Sigma parameter for Gaussian weighting.
            batch_size (int): Batch size for weight tiles.
            device (torch.device): Device where tensors will be allocated (e.g., 'cuda' or 'cpu').
            dtype (torch.dtype): Data type of the tensors (e.g., torch.float32).

        Returns:
            tuple: A tuple containing:
                - tile_weights (np.ndarray): Array of weights for each tile.
                - tile_row_overlaps (np.ndarray): Array of row overlaps for each tile.
                - tile_col_overlaps (np.ndarray): Array of column overlaps for each tile.
        """
    
        # Create arrays to store dynamic overlaps and weights
        tile_row_overlaps = np.full((grid_rows, grid_cols), normal_tile_overlap)
        tile_col_overlaps = np.full((grid_rows, grid_cols), normal_tile_overlap)
        tile_weights = np.empty((grid_rows, grid_cols), dtype=object)  # Stores Gaussian or cosine weights

        # Iterate over tiles to adjust overlap and calculate weights
        for row in range(grid_rows):
            for col in range(grid_cols):
                # Calculate the size of the current tile
                px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices(
                    row, col, tile_width, tile_height, normal_tile_overlap, normal_tile_overlap, width, height
                )
                current_tile_width = px_col_end - px_col_init
                current_tile_height = px_row_end - px_row_init
                sigma = tile_sigma

                # Adjust overlap for smaller tiles
                if current_tile_width < tile_width:
                    px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices(
                        row, col, tile_width, tile_height, border_tile_overlap, border_tile_overlap, width, height
                    )
                    current_tile_width = px_col_end - px_col_init
                    tile_col_overlaps[row, col] = border_tile_overlap
                    sigma = tile_sigma * 1.2
                if current_tile_height < tile_height:
                    px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices(
                        row, col, tile_width, tile_height, border_tile_overlap, border_tile_overlap, width, height
                    )
                    current_tile_height = px_row_end - px_row_init
                    tile_row_overlaps[row, col] = border_tile_overlap
                    sigma = tile_sigma * 1.2

                # Calculate weights for the current tile
                if tile_weighting_method == TileWeightingMethod.COSINE.value:
                    tile_weights[row, col] = self._generate_cosine_weights(
                        tile_width=current_tile_width,
                        tile_height=current_tile_height,
                        nbatches=batch_size,
                        device=device,
                        dtype=torch.float32,
                    )
                else:
                    tile_weights[row, col] = self._generate_gaussian_weights(
                        tile_width=current_tile_width,
                        tile_height=current_tile_height,
                        nbatches=batch_size,
                        device=device,
                        dtype=dtype,
                        sigma=sigma,
                    )

        return tile_weights, tile_row_overlaps, tile_col_overlaps

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
    def upcast_vae(self):
        dtype = self.vae.dtype
        self.vae.to(dtype=torch.float32)
        use_torch_2_0_or_xformers = isinstance(
            self.vae.decoder.mid_block.attentions[0].processor,
            (
                AttnProcessor2_0,
                XFormersAttnProcessor,
            ),
        )
        # if xformers or torch_2_0 is used attention block does not need
        # to be in float32 which can save lots of memory
        if use_torch_2_0_or_xformers:
            self.vae.post_quant_conv.to(dtype)
            self.vae.decoder.conv_in.to(dtype)
            self.vae.decoder.mid_block.to(dtype)

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        image: PipelineImageInput = None,
        control_image: PipelineImageInput = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        strength: float = 0.9999,
        num_inference_steps: int = 50,
        guidance_scale: float = 5.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
        guess_mode: bool = False,
        control_guidance_start: Union[float, List[float]] = 0.0,
        control_guidance_end: Union[float, List[float]] = 1.0,
        control_mode: Optional[Union[int, List[int]]] = None,
        original_size: Tuple[int, int] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        target_size: Tuple[int, int] = None,
        negative_original_size: Optional[Tuple[int, int]] = None,
        negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
        negative_target_size: Optional[Tuple[int, int]] = None,
        aesthetic_score: float = 6.0,
        negative_aesthetic_score: float = 2.5,
        clip_skip: Optional[int] = None,
        normal_tile_overlap: int = 64,
        border_tile_overlap: int = 128,
        max_tile_size: int = 1024,
        tile_gaussian_sigma: float = 0.05,
        tile_weighting_method: str = "Cosine",
        **kwargs,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
            image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`, *optional*):
                The initial image to be used as the starting point for the image generation process. Can also accept
                image latents as `image`, if passing latents directly, they will not be encoded again.
            control_image (`PipelineImageInput`, *optional*):
                The ControlNet input condition. ControlNet uses this input condition to generate guidance for Unet.
                If the type is specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also
                be accepted as an image. The dimensions of the output image default to `image`'s dimensions. If height
                and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
                init, images must be passed as a list such that each element of the list can be correctly batched for
                input to a single ControlNet.
            height (`int`, *optional*):
                The height in pixels of the generated image. If not provided, defaults to the height of `control_image`.
            width (`int`, *optional*):
                The width in pixels of the generated image. If not provided, defaults to the width of `control_image`.
            strength (`float`, *optional*, defaults to 0.9999):
                Indicates the extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
                starting point, and more noise is added the higher the `strength`. The number of denoising steps depends
                on the amount of noise initially added. When `strength` is 1, added noise is maximum, and the denoising
                process runs for the full number of iterations specified in `num_inference_steps`.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 5.0):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf).
                Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages generating
                images closely linked to the text `prompt`, usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.Tensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will be generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/):
                `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
                The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
                to the residual in the original UNet. If multiple ControlNets are specified in init, you can set the
                corresponding scale as a list.
            guess_mode (`bool`, *optional*, defaults to `False`):
                In this mode, the ControlNet encoder will try to recognize the content of the input image even if
                you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
            control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
                The percentage of total steps at which the ControlNet starts applying.
            control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
                The percentage of total steps at which the ControlNet stops applying.
            control_mode (`int` or `List[int]`, *optional*):
                The mode of ControlNet guidance. Can be used to specify different behaviors for multiple ControlNets.
            original_size (`Tuple[int, int]`, *optional*):
                If `original_size` is not the same as `target_size`, the image will appear to be down- or upsampled.
                `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning.
            crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to (0, 0)):
                `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
                `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
                `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning.
            target_size (`Tuple[int, int]`, *optional*):
                For most cases, `target_size` should be set to the desired height and width of the generated image. If
                not specified, it will default to `(height, width)`. Part of SDXL's micro-conditioning.
            negative_original_size (`Tuple[int, int]`, *optional*):
                To negatively condition the generation process based on a specific image resolution. Part of SDXL's
                micro-conditioning.
            negative_crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to (0, 0)):
                To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
                micro-conditioning.
            negative_target_size (`Tuple[int, int]`, *optional*):
                To negatively condition the generation process based on a target image resolution. It should be the same
                as the `target_size` for most cases. Part of SDXL's micro-conditioning.
            aesthetic_score (`float`, *optional*, defaults to 6.0):
                Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
                Part of SDXL's micro-conditioning.
            negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
                Used to simulate an aesthetic score of the generated image by influencing the negative text condition.
                Part of SDXL's micro-conditioning.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            normal_tile_overlap (`int`, *optional*, defaults to 64):
                Number of overlapping pixels between tiles in consecutive rows.
            border_tile_overlap (`int`, *optional*, defaults to 128):
                Number of overlapping pixels between tiles at the borders.
            max_tile_size (`int`, *optional*, defaults to 1024):
                Maximum size of a tile in pixels.
            tile_gaussian_sigma (`float`, *optional*, defaults to 0.3):
                Sigma parameter for Gaussian weighting of tiles.
            tile_weighting_method (`str`, *optional*, defaults to "Cosine"):
                Method for weighting tiles. Options: "Cosine" or "Gaussian".

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple`
            containing the output images.
        """

        controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet

        # align format for control guidance
        if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
            control_guidance_start = len(control_guidance_end) * [control_guidance_start]
        elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
            control_guidance_end = len(control_guidance_start) * [control_guidance_end]

        if not isinstance(control_image, list):
            control_image = [control_image]
        else:
            control_image = control_image.copy()

        if control_mode is None or isinstance(control_mode, list) and len(control_mode) == 0:
            raise ValueError("The value for `control_mode` is expected!")

        if not isinstance(control_mode, list):
            control_mode = [control_mode]

        if len(control_image) != len(control_mode):
            raise ValueError("Expected len(control_image) == len(control_mode)")

        num_control_type = controlnet.config.num_control_type

        # 0. Set internal use parameters
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor
        original_size = original_size or (height, width)
        target_size = target_size or (height, width)
        negative_original_size = negative_original_size or original_size
        negative_target_size = negative_target_size or target_size        
        control_type = [0 for _ in range(num_control_type)]
        control_type = torch.Tensor(control_type)
        self._guidance_scale = guidance_scale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs
        self._interrupt = False
        batch_size = 1
        device = self._execution_device
        global_pool_conditions = controlnet.config.global_pool_conditions
        guess_mode = guess_mode or global_pool_conditions

        # 1. Check inputs
        for _image, control_idx in zip(control_image, control_mode):
            control_type[control_idx] = 1
            self.check_inputs(
                prompt,
                height,
                width,
                _image,
                strength,
                num_inference_steps,
                normal_tile_overlap,
                border_tile_overlap,
                max_tile_size,
                tile_gaussian_sigma,
                tile_weighting_method,
                controlnet_conditioning_scale,
                control_guidance_start,
                control_guidance_end,
            )

        # 2 Get tile width and tile height size
        tile_width, tile_height = _adaptive_tile_size((width, height), max_tile_size=max_tile_size)
        
        # 2.1 Calculate the number of tiles needed 
        grid_rows, grid_cols = self._get_num_tiles(height, width, tile_height, tile_width, normal_tile_overlap, border_tile_overlap)      

        # 2.2 Expand prompt to number of tiles
        if not isinstance(prompt, list):
            prompt = [[prompt] * grid_cols] * grid_rows

        # 2.3 Update height and width tile size by tile size and tile overlap size
        width = (grid_cols - 1) * (tile_width - normal_tile_overlap) + min(
            tile_width, width - (grid_cols - 1) * (tile_width - normal_tile_overlap)
        )
        height = (grid_rows - 1) * (tile_height - normal_tile_overlap) + min(
            tile_height, height - (grid_rows - 1) * (tile_height - normal_tile_overlap)
        )

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
        )
        text_embeddings = [
            [
                self.encode_prompt(
                    prompt=col,
                    device=device,
                    num_images_per_prompt=num_images_per_prompt,
                    do_classifier_free_guidance=self.do_classifier_free_guidance,
                    negative_prompt=negative_prompt,
                    prompt_embeds=None,
                    negative_prompt_embeds=None,
                    pooled_prompt_embeds=None,
                    negative_pooled_prompt_embeds=None,
                    lora_scale=text_encoder_lora_scale,
                    clip_skip=self.clip_skip,
                )
                for col in row
            ]
            for row in prompt
        ]

        # 4. Prepare latent image
        image_tensor = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)

        # 4.1 Prepare controlnet_conditioning_image
        control_image = self.prepare_control_image(
            image=image,
            width=width,
            height=height,
            batch_size=batch_size * num_images_per_prompt,
            num_images_per_prompt=num_images_per_prompt,
            device=device,
            dtype=controlnet.dtype,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            guess_mode=guess_mode,
        )
        control_type = (
            control_type.reshape(1, -1)
            .to(device, dtype=controlnet.dtype)
            .repeat(batch_size * num_images_per_prompt * 2, 1)
        )

        # 5. Prepare timesteps
        accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
        extra_set_kwargs = {}
        if accepts_offset:
            extra_set_kwargs["offset"] = 1
        self.scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
        self._num_timesteps = len(timesteps)

        # 6. Prepare latent variables
        dtype = text_embeddings[0][0][0].dtype
        if latents is None:
            latents = self.prepare_latents(
                image_tensor,
                latent_timestep,
                batch_size,
                num_images_per_prompt,
                dtype,
                device,
                generator,
                True,
            )

        # if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas
        if isinstance(self.scheduler, LMSDiscreteScheduler):
            latents = latents * self.scheduler.sigmas[0]

        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 8. Create tensor stating which controlnets to keep
        controlnet_keep = []
        for i in range(len(timesteps)):
            controlnet_keep.append(
                1.0
                - float(i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end)
            )

        # 8.1 Prepare added time ids & embeddings
        # text_embeddings order: prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
        embeddings_and_added_time = []
        crops_coords_top_left = negative_crops_coords_top_left = (tile_width, tile_height)
        for row in range(grid_rows):
            addition_embed_type_row = []
            for col in range(grid_cols):
                # extract generated values
                prompt_embeds = text_embeddings[row][col][0]
                negative_prompt_embeds = text_embeddings[row][col][1]
                pooled_prompt_embeds = text_embeddings[row][col][2]
                negative_pooled_prompt_embeds = text_embeddings[row][col][3]

                if negative_original_size is None:
                    negative_original_size = original_size
                if negative_target_size is None:
                    negative_target_size = target_size
                add_text_embeds = pooled_prompt_embeds

                if self.text_encoder_2 is None:
                    text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
                else:
                    text_encoder_projection_dim = self.text_encoder_2.config.projection_dim

                add_time_ids, add_neg_time_ids = self._get_add_time_ids(
                    original_size,
                    crops_coords_top_left,
                    target_size,
                    aesthetic_score,
                    negative_aesthetic_score,
                    negative_original_size,
                    negative_crops_coords_top_left,
                    negative_target_size,
                    dtype=prompt_embeds.dtype,
                    text_encoder_projection_dim=text_encoder_projection_dim,
                )
                add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)

                if self.do_classifier_free_guidance:
                    prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
                    add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
                    add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
                    add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)

                prompt_embeds = prompt_embeds.to(device)
                add_text_embeds = add_text_embeds.to(device)
                add_time_ids = add_time_ids.to(device)
                addition_embed_type_row.append((prompt_embeds, add_text_embeds, add_time_ids))

            embeddings_and_added_time.append(addition_embed_type_row)

        # 9. Prepare tiles weights and latent overlaps size to denoising process
        tile_weights, tile_row_overlaps, tile_col_overlaps = self.prepare_tiles(
            grid_rows,
            grid_cols,
            tile_weighting_method,
            tile_width,
            tile_height,
            normal_tile_overlap,
            border_tile_overlap,
            width,
            height,
            tile_gaussian_sigma,
            batch_size,
            device,
            dtype,
        )

        # 10. Denoising loop
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # Diffuse each tile
                noise_preds = []
                for row in range(grid_rows):
                    noise_preds_row = []
                    for col in range(grid_cols):
                        if self.interrupt:
                            continue
                        tile_row_overlap = tile_row_overlaps[row, col]
                        tile_col_overlap = tile_col_overlaps[row, col]

                        px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices(
                            row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, width, height
                        )

                        tile_latents = latents[:, :, px_row_init:px_row_end, px_col_init:px_col_end]

                        # expand the latents if we are doing classifier free guidance
                        latent_model_input = (
                            torch.cat([tile_latents] * 2)
                            if self.do_classifier_free_guidance
                            else tile_latents  # 1, 4, ...
                        )
                        latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                        # predict the noise residual
                        added_cond_kwargs = {
                            "text_embeds": embeddings_and_added_time[row][col][1],
                            "time_ids": embeddings_and_added_time[row][col][2],
                        }

                        # controlnet(s) inference
                        if guess_mode and self.do_classifier_free_guidance:
                            # Infer ControlNet only for the conditional batch.
                            control_model_input = tile_latents
                            control_model_input = self.scheduler.scale_model_input(control_model_input, t)
                            controlnet_prompt_embeds = embeddings_and_added_time[row][col][0].chunk(2)[1]
                            controlnet_added_cond_kwargs = {
                                "text_embeds": embeddings_and_added_time[row][col][1].chunk(2)[1],
                                "time_ids": embeddings_and_added_time[row][col][2].chunk(2)[1],
                            }
                        else:
                            control_model_input = latent_model_input
                            controlnet_prompt_embeds = embeddings_and_added_time[row][col][0]
                            controlnet_added_cond_kwargs = added_cond_kwargs

                        if isinstance(controlnet_keep[i], list):
                            cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
                        else:
                            controlnet_cond_scale = controlnet_conditioning_scale
                            if isinstance(controlnet_cond_scale, list):
                                controlnet_cond_scale = controlnet_cond_scale[0]
                            cond_scale = controlnet_cond_scale * controlnet_keep[i]

                        px_row_init_pixel, px_row_end_pixel, px_col_init_pixel, px_col_end_pixel = _tile2pixel_indices(
                            row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, width, height
                        )

                        tile_control_image = control_image[
                            :, :, px_row_init_pixel:px_row_end_pixel, px_col_init_pixel:px_col_end_pixel
                        ]

                        down_block_res_samples, mid_block_res_sample = self.controlnet(
                            control_model_input,
                            t,
                            encoder_hidden_states=controlnet_prompt_embeds,
                            controlnet_cond=[tile_control_image],
                            control_type=control_type,
                            control_type_idx=control_mode,
                            conditioning_scale=cond_scale,
                            guess_mode=guess_mode,
                            added_cond_kwargs=controlnet_added_cond_kwargs,
                            return_dict=False,
                        )

                        if guess_mode and self.do_classifier_free_guidance:
                            # Inferred ControlNet only for the conditional batch.
                            # To apply the output of ControlNet to both the unconditional and conditional batches,
                            # add 0 to the unconditional batch to keep it unchanged.
                            down_block_res_samples = [
                                torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples
                            ]
                            mid_block_res_sample = torch.cat(
                                [torch.zeros_like(mid_block_res_sample), mid_block_res_sample]
                            )

                        # predict the noise residual
                        with torch.amp.autocast(device.type, dtype=dtype, enabled=dtype != self.unet.dtype):
                            noise_pred = self.unet(
                                latent_model_input,
                                t,
                                encoder_hidden_states=embeddings_and_added_time[row][col][0],
                                cross_attention_kwargs=self.cross_attention_kwargs,
                                down_block_additional_residuals=down_block_res_samples,
                                mid_block_additional_residual=mid_block_res_sample,
                                added_cond_kwargs=added_cond_kwargs,
                                return_dict=False,
                            )[0]

                        # perform guidance
                        if self.do_classifier_free_guidance:
                            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                            noise_pred_tile = noise_pred_uncond + guidance_scale * (
                                noise_pred_text - noise_pred_uncond
                            )
                            noise_preds_row.append(noise_pred_tile)
                    noise_preds.append(noise_preds_row)

                # Stitch noise predictions for all tiles
                noise_pred = torch.zeros(latents.shape, device=device)
                contributors = torch.zeros(latents.shape, device=device)

                # Add each tile contribution to overall latents
                for row in range(grid_rows):
                    for col in range(grid_cols):
                        tile_row_overlap = tile_row_overlaps[row, col]
                        tile_col_overlap = tile_col_overlaps[row, col]
                        px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices(
                            row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, width, height
                        )
                        tile_weights_resized = tile_weights[row, col]

                        noise_pred[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += (
                            noise_preds[row][col] * tile_weights_resized
                        )
                        contributors[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += tile_weights_resized

                # Average overlapping areas with more than 1 contributor
                noise_pred /= contributors
                noise_pred = noise_pred.to(dtype)

                # compute the previous noisy sample x_t -> x_t-1
                latents_dtype = latents.dtype
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
                if latents.dtype != latents_dtype:
                    if torch.backends.mps.is_available():
                        # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
                        latents = latents.to(latents_dtype)

                # update progress bar
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

                if XLA_AVAILABLE:
                    xm.mark_step()

        # If we do sequential model offloading, let's offload unet and controlnet
        # manually for max memory savings
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.unet.to("cpu")
            self.controlnet.to("cpu")
            torch.cuda.empty_cache()

        if not output_type == "latent":
            # make sure the VAE is in float32 mode, as it overflows in float16
            needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast

            if needs_upcasting:
                self.upcast_vae()
                latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)

            # unscale/denormalize the latents
            # denormalize with the mean and std if available and not None
            has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
            has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
            if has_latents_mean and has_latents_std:
                latents_mean = (
                    torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
                )
                latents_std = (
                    torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
                )
                latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
            else:
                latents = latents / self.vae.config.scaling_factor

            image = self.vae.decode(latents, return_dict=False)[0]

            # cast back to fp16 if needed
            if needs_upcasting:
                self.vae.to(dtype=torch.float16)

            # apply watermark if available
            if self.watermark is not None:
                image = self.watermark.apply_watermark(image)

            image = self.image_processor.postprocess(image, output_type=output_type)
        else:
            image = latents

        # Offload all models
        self.maybe_free_model_hooks()

        result = StableDiffusionXLPipelineOutput(images=image)
        if not return_dict:
            return (image,)

        return result