File size: 14,942 Bytes
32e89fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a70734a
 
 
32e89fe
923fd8e
32e89fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ff7084
32e89fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cec84ff
32e89fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import torch
import spaces
from diffusers import ControlNetUnionModel, AutoencoderKL, UNet2DConditionModel
import gradio as gr

from pipeline.mod_controlnet_tile_sr_sdxl import StableDiffusionXLControlNetTileSRPipeline
from pipeline.util import (
    SAMPLERS,
    Platinum,
    calculate_overlap,
    create_hdr_effect,
    progressive_upscale,
    quantize_8bit,
    select_scheduler,
)

device = "cuda"

# Initialize the models and pipeline
controlnet = ControlNetUnionModel.from_pretrained(
    "brad-twinkl/controlnet-union-sdxl-1.0-promax", torch_dtype=torch.float16
).to(device=device)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to(device=device)

model_id = "SG161222/RealVisXL_V5.0"
pipe = StableDiffusionXLControlNetTileSRPipeline.from_pretrained(
    model_id, controlnet=controlnet, vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16"
).to(device)

# unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet", variant="fp16", use_safetensors=True)
# quantize_8bit(unet)  # << Enable this if you have limited VRAM
# pipe.unet = unet

#pipe.enable_model_cpu_offload()  # << Enable this if you have limited VRAM
pipe.enable_vae_tiling() # << Enable this if you have limited VRAM
pipe.enable_vae_slicing() # << Enable this if you have limited VRAM

# region functions
@spaces.GPU
def predict(
    image,
    prompt,
    negative_prompt,
    resolution,
    hdr,
    num_inference_steps,
    denoising_strenght,
    controlnet_strength,
    tile_gaussian_sigma,
    scheduler,
    guidance_scale,
    max_tile_size,
    tile_weighting_method,
    progress=gr.Progress(track_tqdm=True),
):
    global pipe

    # Set selected scheduler
    print(f"Using scheduler: {scheduler}...")
    pipe.scheduler = select_scheduler(pipe, scheduler)

    # Get current image size
    original_height = image.height
    original_width = image.width
    print(f"Current resolution: H:{original_height} x W:{original_width}")

    # Pre-upscale image for tiling
    control_image = progressive_upscale(image, resolution)
    control_image = create_hdr_effect(control_image, hdr)

    # Update target height and width
    target_height = control_image.height
    target_width = control_image.width
    print(f"Target resolution: H:{target_height} x W:{target_width}")
    print(f"Applied HDR effect: {True if hdr > 0 else False}")

    # Calculate overlap size
    normal_tile_overlap, border_tile_overlap = calculate_overlap(target_width, target_height)

    # Image generation
    print("Diffusion kicking in... almost done, coffee's on you!")
    image = pipe(
        image=control_image,
        control_image=image,
        control_mode=[6],
        controlnet_conditioning_scale=float(controlnet_strength),
        prompt=prompt,
        negative_prompt=negative_prompt,
        normal_tile_overlap=normal_tile_overlap,
        border_tile_overlap=border_tile_overlap,
        height=target_height,
        width=target_width,
        original_size=(original_width, original_height),
        target_size=(target_width, target_height),
        guidance_scale=guidance_scale,        
        strength=float(denoising_strenght),
        tile_weighting_method=tile_weighting_method,
        max_tile_size=max_tile_size,
        tile_gaussian_sigma=float(tile_gaussian_sigma),
        num_inference_steps=num_inference_steps,
    )["images"][0]
    image.save("result.png")
    return image


def clear_result():
    return gr.update(value=None)

def set_maximum_resolution(max_tile_size, current_value):
    max_scale = 8  # <- you can try increase it to 12x, 16x if you wish!
    maximum_value = max_tile_size * max_scale
    if current_value > maximum_value:
        return gr.update(maximum=maximum_value, value=maximum_value)
    return gr.update(maximum=maximum_value)

def select_tile_weighting_method(tile_weighting_method):
    return gr.update(visible=True if tile_weighting_method=="Gaussian" else False)

# endregion

css = """
body {
    background: linear-gradient(135deg, #F0F0F0, #FFFFFF);
    font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
    color: #333;
    margin: 0;
    padding: 0;
}
.gradio-container {
    background: rgba(255, 255, 255, 0.95);
    border-radius: 15px;
    padding: 30px 40px;
    box-shadow: 0 8px 30px rgba(0, 0, 0, 0.3);
    margin: 40px 340px;
    /*max-width: 1200px;*/
}
.gradio-container h1 {
    color: #333;
    text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.2);
}
.fillable {
    width: 95% !important;
    max-width: unset !important;
}
#examples_container {
    margin: auto;
    width: 90%;
}
#examples_row {
    justify-content: center;
}
#tips_row{    
    padding-left: 20px;
}
.sidebar {
    background: rgba(255, 255, 255, 0.98);
    border-radius: 10px;
    padding: 10px;
    box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
}
.sidebar .toggle-button {
    background: linear-gradient(90deg, #7367f0, #9c93f4);
    border: none;
    color: #fff;
    padding: 12px 24px;
    text-transform: uppercase;
    font-weight: bold;
    letter-spacing: 1px;
    border-radius: 5px;
    cursor: pointer;
    transition: transform 0.2s ease-in-out;
}
.toggle-button:hover {
    transform: scale(1.05);
}
"""
title = """<h1 align="center">MoD ControlNet Tile Upscaler for SDXLπŸ€—</h1>
           <div style="display: flex; flex-direction: column; justify-content: center; align-items: center; text-align: center; overflow:hidden;">
                <span>This project implements the <a href="https://arxiv.org/pdf/2408.06072">πŸ“œ MoD (Mixture-of-Diffusers)</a> tiled diffusion technique and combines it with SDXL's ControlNet Tile process.</span>
                <span>πŸ’» <a href="https://github.com/DEVAIEXP/mod-control-tile-upscaler-sdxl">GitHub Code</a></span>
                <span>πŸš€ <b>Controlnet Union Power!</b> Check out the model: <a href="https://huggingface.co/xinsir/controlnet-union-sdxl-1.0">Controlnet Union</a></span>
                <span>🎨 <b>RealVisXL V5.0 for Stunning Visuals!</b> Explore it here: <a href="https://huggingface.co/SG161222/RealVisXL_V5.0">RealVisXL</a></span>
           </div>
           """

tips = """
### Method
This project proposes an enhanced image upscaling method that leverages ControlNet Tile and Mixture-of-Diffusers techniques, integrating tile diffusion directly into the denoising process within the latent space.

Let's compare our method with conventional ControlNet Tile upscaling:

**Conventional ControlNet Tile:**
* Processes tiles in pixel space, potentially leading to edge artifacts during fusion.
* Processes each tile sequentially, increasing overall execution time (e.g., 16 tiles x 3 min = 48 min).
* Pixel space fusion using masks (e.g., Gaussian) can result in visible seams.
* Fixed or adaptively sized tiles and overlap can vary, causing inconsistencies.

**Proposed Method (MoD ControlNet Tile Upscaler):**
* Processes tiles in latent space, enabling smoother fusion and mitigating edge artifacts.
* Processes all tiles in parallel during denoising, drastically reducing execution time.
* Latent space fusion with dynamically calculated weights ensures seamless transitions between tiles.
* Tile size and overlap are dynamically adjusted based on the upscaling scale. For scales below 4x, fixed overlap maintains consistency.

"""

about = """
πŸ“§ **Contact**
<br>
If you have any questions or suggestions, feel free to send your question to <b>[email protected]</b>.
"""

with gr.Blocks(css=css, theme=Platinum(), title="MoD ControlNet Tile Upscaler") as app:
    gr.Markdown(title)
    with gr.Row():
        with gr.Column(scale=3):                        
            with gr.Row():
                with gr.Column():
                    input_image = gr.Image(type="pil", label="Input Image",sources=["upload"], height=500)
                with gr.Column():
                    result = gr.Image(
                        label="Generated Image", show_label=True, format="png", interactive=False, scale=1, height=500, min_width=670
                    )
            with gr.Row():
                with gr.Accordion("Input Prompt", open=False):
                    with gr.Column():
                        prompt = gr.Textbox(
                            lines=2,
                            label="Prompt",
                            placeholder="Default prompt for image",
                            value="high-quality, noise-free edges, high quality, 4k, hd, 8k",
                        )
                    with gr.Column():
                        negative_prompt = gr.Textbox(
                            lines=2,
                            label="Negative Prompt (Optional)",
                            placeholder="e.g., blurry, low resolution, artifacts, poor details",
                            value="blurry, pixelated, noisy, low resolution, artifacts, poor details",
                        )
            with gr.Row():
                generate_button = gr.Button("Generate", variant="primary")
        with gr.Column(scale=1):
            with gr.Row(elem_id="tips_row"):
                gr.Markdown(tips)
    with gr.Sidebar(label="Parameters", open=True):
        with gr.Row(elem_id="parameters_row"):
            gr.Markdown("### General parameters")
            tile_weighting_method = gr.Dropdown(
                label="Tile Weighting Meethod", choices=["Cosine", "Gaussian"], value="Cosine"
            )
            tile_gaussian_sigma = gr.Slider(label="Gaussian Sigma", minimum=0.05, maximum=1.0, step=0.01, value=0.3, visible=False)
            max_tile_size = gr.Dropdown(label="Max. Tile Size", choices=[1024, 1280], value=1024)
            resolution = gr.Slider(minimum=128, maximum=8192, value=2048, step=128, label="Resolution")
            num_inference_steps = gr.Slider(minimum=2, maximum=100, value=30, step=1, label="Inference Steps")
            guidance_scale = gr.Slider(minimum=1, maximum=20, value=6, step=0.1, label="Guidance Scale")
            denoising_strength = gr.Slider(minimum=0.1, maximum=1, value=0.6, step=0.01, label="Denoising Strength")
            controlnet_strength = gr.Slider(
                minimum=0.1, maximum=2.0, value=1.0, step=0.05, label="ControlNet Strength"
            )            
            hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
        with gr.Row():
            scheduler = gr.Dropdown(
                label="Sampler",
                choices=list(SAMPLERS.keys()),
                value="UniPC",
            )
    with gr.Accordion(label="Example Images", open=True):
        with gr.Row(elem_id="examples_row"):
            with gr.Column(scale=12, elem_id="examples_container"):
                gr.Examples(
                    examples=[
                        [   "./examples/1.jpg",
                            prompt.value,
                            negative_prompt.value,
                            4096,
                            0.0,
                            35,
                            0.65,
                            1.0,
                            0.3,
                            "UniPC",
                            4,
                            1024,
                            "Cosine"
                        ],
                        [   "./examples/2.jpg",
                            prompt.value,
                            negative_prompt.value,
                            4096,
                            0.5,
                            35,
                            0.65,
                            1.0,
                            0.3,
                            "UniPC",
                            4,
                            1024,
                            "Cosine"
                        ],
                        [   "./examples/3.jpg",
                            prompt.value,
                            negative_prompt.value,
                            5120,
                            0.5,
                            50,
                            0.65,
                            1.0,
                            0.3,
                            "UniPC",
                            4,
                            1280,
                            "Gaussian"
                        ],
                        [   "./examples/4.jpg",
                            prompt.value,
                            negative_prompt.value,
                            8192,
                            0.1,
                            50,
                            0.5,
                            1.0,
                            0.3,
                            "UniPC",
                            4,
                            1024,
                            "Gaussian"
                        ],
                        [   "./examples/5.jpg",
                            prompt.value,
                            negative_prompt.value,
                            8192,
                            0.3,
                            50,
                            0.5,
                            1.0,
                            0.3,
                            "UniPC",
                            4,
                            1024,
                            "Cosine"
                        ],     
                    ],
                    inputs=[
                        input_image,
                        prompt,
                        negative_prompt,
                        resolution,
                        hdr,
                        num_inference_steps,
                        denoising_strength,
                        controlnet_strength,   
                        tile_gaussian_sigma,                     
                        scheduler,
                        guidance_scale,
                        max_tile_size,
                        tile_weighting_method,
                    ],                    
                    fn=predict,
                    outputs=result,
                    cache_examples=False,
                )

    max_tile_size.select(fn=set_maximum_resolution, inputs=[max_tile_size, resolution], outputs=resolution)
    tile_weighting_method.select(fn=select_tile_weighting_method, inputs=tile_weighting_method, outputs=tile_gaussian_sigma)
    generate_button.click(
        fn=clear_result,
        inputs=None,
        outputs=result,
    ).then(
        fn=predict,
        inputs=[
            input_image,
            prompt,
            negative_prompt,
            resolution,
            hdr,
            num_inference_steps,
            denoising_strength,
            controlnet_strength,
            tile_gaussian_sigma,
            scheduler,
            guidance_scale,
            max_tile_size,
            tile_weighting_method,
        ],
        outputs=result,
        show_progress="full"
    )
    gr.Markdown(about)
app.launch(share=False)