File size: 15,176 Bytes
9c56e37
 
 
 
 
 
a75f56e
9c56e37
 
01cea67
 
84fa20a
 
 
d55da55
9c56e37
 
84fa20a
d55da55
a75f56e
 
 
9c56e37
d55da55
 
 
 
 
 
 
 
 
84fa20a
 
 
9c56e37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84fa20a
 
 
 
 
 
9c56e37
84fa20a
 
 
 
 
d55da55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84fa20a
 
 
 
 
 
 
 
 
 
 
 
 
 
9c56e37
 
 
 
84fa20a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c56e37
 
f883496
 
9c56e37
01cea67
 
 
 
 
 
 
 
9c56e37
 
 
 
 
 
 
 
01cea67
 
9c56e37
01cea67
 
9c56e37
 
01cea67
 
9c56e37
 
 
 
 
 
 
8f4e742
9c56e37
 
 
 
 
 
84fa20a
9c56e37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84fa20a
9c56e37
 
 
 
 
 
 
 
84fa20a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01cea67
 
84fa20a
 
 
 
 
9c56e37
01cea67
 
 
 
 
 
 
 
 
84fa20a
 
01cea67
 
 
 
 
 
 
 
 
 
 
 
 
84fa20a
01cea67
 
 
 
 
 
 
84fa20a
 
01cea67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c56e37
01cea67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c56e37
 
01cea67
9c56e37
 
 
01cea67
84fa20a
 
01cea67
 
 
 
 
84fa20a
9c56e37
01cea67
84fa20a
9c56e37
01cea67
 
 
84fa20a
 
01cea67
 
 
 
 
 
84fa20a
01cea67
 
9c56e37
b97be1a
 
 
84fa20a
 
 
 
 
 
 
 
 
 
 
 
 
 
b97be1a
 
 
 
 
 
 
 
84fa20a
b97be1a
 
 
84fa20a
9c56e37
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import streamlit as st
import pandas as pd
from dotenv import load_dotenv
from datasets import load_dataset
import json
import re
from openai import OpenAI
import os
from config import DATASETS, MODELS
import matplotlib.pyplot as plt
import altair as alt
from concurrent.futures import ThreadPoolExecutor, as_completed
from tenacity import retry, wait_exponential, stop_after_attempt, retry_if_exception_type
import threading
from anthropic import Anthropic

load_dotenv()

togetherai_client = OpenAI(
    api_key=os.getenv('TOGETHERAI_API_KEY'),
    base_url="https://api.together.xyz/v1"
)

openai_client = OpenAI(
    api_key=os.getenv('OPENAI_API_KEY')
)

anthropic_client = Anthropic(
    api_key=os.getenv('ANTHROPIC_API_KEY')
)


MAX_CONCURRENT_CALLS = 5
semaphore = threading.Semaphore(MAX_CONCURRENT_CALLS)

@st.cache_data
def load_dataset_by_name(dataset_name, split="train"):
    dataset_config = DATASETS[dataset_name]
    dataset = load_dataset(dataset_config["loader"])
    df = pd.DataFrame(dataset[split])
    df = df[df['choice_type'] == 'single']
    
    questions = []
    for _, row in df.iterrows():
        options = [row['opa'], row['opb'], row['opc'], row['opd']]
        correct_answer = options[row['cop']]
        
        question_dict = {
            'question': row['question'],
            'options': options,
            'correct_answer': correct_answer,
            'subject_name': row['subject_name'],
            'topic_name': row['topic_name'],
            'explanation': row['exp']
        }
        questions.append(question_dict)
    
    st.write(f"Loaded {len(questions)} single-select questions from {dataset_name}")
    return questions

@retry(
    wait=wait_exponential(multiplier=1, min=4, max=10),
    stop=stop_after_attempt(5),
    retry=retry_if_exception_type(Exception)
)

def get_model_response(question, options, prompt_template, model_name):
    with semaphore:
        try:
            model_config = MODELS[model_name]
            options_text = "\n".join([f"{chr(65+i)}. {opt}" for i, opt in enumerate(options)])
            prompt = prompt_template.replace("{question}", question).replace("{options}", options_text)

            provider = model_config["provider"]

            if provider == "togetherai":
                response = togetherai_client.chat.completions.create(
                            model=model_config["model_id"],
                            messages=[{"role": "user", "content": prompt}]
                            )
                response_text = response.choices[0].message.content.strip()

            elif provider == "openai":
                response = openai_client.chat.completions.create(
                        model=model_config["model_id"],
                        messages=[{
                            "role": "user",
                            "content": prompt}]      
                    )
                response_text = response.choices[0].message.content.strip()

            elif provider == "anthropic":
                response = anthropic_client.messages.create(
                model=model_config["model_id"],
                messages=[{"role": "user", "content": prompt}],
                max_tokens=4096 
                )
                response_text =  response.content[0].text

            json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
            if not json_match:
                return f"Error: Invalid response format", response_text
            
            json_response = json.loads(json_match.group(0))
            answer = json_response.get('answer', '').strip()
            answer = re.sub(r'^[A-D]\.\s*', '', answer)
            
            if not any(answer.lower() == opt.lower() for opt in options):
                return f"Error: Answer '{answer}' does not match any options", response_text
            
            return answer, response_text
        except Exception as e:
            return f"Error: {str(e)}", str(e)

def evaluate_response(model_response, correct_answer):
    if model_response.startswith("Error:"):
        return False
    is_correct = model_response.lower().strip() == correct_answer.lower().strip()
    return is_correct

def process_single_evaluation(question, prompt_template, model_name):
    answer, response_text = get_model_response(
        question['question'],
        question['options'],
        prompt_template,
        model_name
    )
    is_correct = evaluate_response(answer, question['correct_answer'])
    return {
        'question': question['question'],
        'options': question['options'],
        'model_response': answer,
        'raw_llm_response': response_text,
        'prompt_sent': prompt_template,
        'correct_answer': question['correct_answer'],
        'subject': question['subject_name'],
        'is_correct': is_correct,
        'explanation': question['explanation'],
        'model_name': model_name
    }

def process_evaluations_concurrently(questions, prompt_template, models_to_evaluate, progress_callback):
    results = []
    total_iterations = len(models_to_evaluate) * len(questions)
    current_iteration = 0

    with ThreadPoolExecutor(max_workers=MAX_CONCURRENT_CALLS) as executor:
        future_to_params = {}
        for model_name in models_to_evaluate:
            for question in questions:
                future = executor.submit(process_single_evaluation, question, prompt_template, model_name)
                future_to_params[future] = (model_name, question)
        
        for future in as_completed(future_to_params):
            result = future.result()
            results.append(result)
            current_iteration += 1
            progress_callback(current_iteration, total_iterations)
    
    return results

def main():
    st.set_page_config(page_title="LLM Benchmarking in Healthcare", layout="wide")
    st.title("LLM Benchmarking in Healthcare")

    if 'all_results' not in st.session_state:
        st.session_state.all_results = {}
    if 'detailed_model' not in st.session_state:
        st.session_state.detailed_model = None
    if 'detailed_dataset' not in st.session_state:
        st.session_state.detailed_dataset = None
    if 'last_evaluated_dataset' not in st.session_state:
        st.session_state.last_evaluated_dataset = None
    col1, col2 = st.columns(2)
    with col1:
        selected_dataset = st.selectbox(
            "Select Dataset",
            options=list(DATASETS.keys()),
            help="Choose the dataset to evaluate on"
        )
    with col2:
        selected_model = st.multiselect(
            "Select Model(s)",
            options=list(MODELS.keys()),
            default=[list(MODELS.keys())[0]],
            help="Choose one or more models to evaluate."
        )

    models_to_evaluate = selected_model

    default_prompt = '''You are a medical AI assistant. Please answer the following multiple choice question.
Question: {question}

Options:
{options}

## Output Format:
Please provide your answer in JSON format that contains an "answer" field.
You may include any additional fields in your JSON response that you find relevant, such as:
- "choice reasoning": your detailed reasoning
- "elimination reasoning": why you ruled out other options

Example response format:
{
    "answer": "exact option text here(e.g., A. xxx, B. xxx, C. xxx)",
    "choice reasoning": "your detailed reasoning here",
    "elimination reasoning": "why you ruled out other options"
}

Important:
- Only the "answer" field will be used for evaluation
- Ensure your response is in valid JSON format'''

    col1, col2 = st.columns([2, 1])
    with col1:
        prompt_template = st.text_area(
            "Customize Prompt Template", 
            default_prompt, 
            height=400,
            help="The below prompt is editable. Please feel free to edit it before your run."
        )
    
    with col2:
        st.markdown("""
        ### Prompt Variables
        - `{question}`: The medical question
        - `{options}`: The multiple choice options
        """)

    with st.spinner("Loading dataset..."):
        questions = load_dataset_by_name(selected_dataset)
    subjects = sorted(list(set(q['subject_name'] for q in questions)))
    selected_subject = st.selectbox("Filter by subject", ["All"] + subjects)
    
    if selected_subject != "All":
        questions = [q for q in questions if q['subject_name'] == selected_subject]

    num_questions = st.number_input("Number of questions to evaluate", 1, len(questions))

    if st.button("Start Evaluation"):
        with st.spinner("Starting evaluation..."):
            selected_questions = questions[:num_questions]
            
            progress_container = st.container()
            progress_bar = progress_container.progress(0)
            status_text = progress_container.empty()
            
            def update_progress(current, total):
                progress = current / total
                progress_bar.progress(progress)
                status_text.text(f"Progress: {current}/{total} evaluations completed")

            results = process_evaluations_concurrently(
                selected_questions,
                prompt_template,
                models_to_evaluate,
                update_progress
            )
        
        all_results = {}
        for result in results:
            model = result.pop('model_name')
            if model not in all_results:
                all_results[model] = []
            all_results[model].append(result)
        
        st.session_state.all_results = all_results
        st.session_state.last_evaluated_dataset = selected_dataset


        if st.session_state.detailed_model is None and all_results:
            st.session_state.detailed_model = list(all_results.keys())[0]
        if st.session_state.detailed_dataset is None:
            st.session_state.detailed_dataset = selected_dataset

        st.success("Evaluation completed!")
        st.rerun()

    if st.session_state.all_results:
        st.subheader("Evaluation Results")
        
        model_metrics = {}
        for model_name, results in st.session_state.all_results.items():
            df = pd.DataFrame(results)
            metrics = {
                'Accuracy': df['is_correct'].mean(),
            }
            model_metrics[model_name] = metrics

        metrics_df = pd.DataFrame(model_metrics).T

        st.subheader("Model Performance Comparison")
        
        accuracy_chart = alt.Chart(
            metrics_df.reset_index().melt(id_vars=['index'], value_vars=['Accuracy'])
        ).mark_bar().encode(
            x=alt.X('index:N', title=None, axis=None), 
            y=alt.Y('value:Q', title='Accuracy', scale=alt.Scale(domain=[0, 1])),
            color='index:N',
            tooltip=['index:N', 'value:Q']
        ).properties(
            height=300,
            title={
                "text": "Model Accuracy",
                "baseline": "bottom",
                "orient": "bottom",  
                "dy": 20              
            }
        )
        st.altair_chart(accuracy_chart, use_container_width=True)

    if st.session_state.all_results:
        st.subheader("Detailed Results")
        
        def update_model():
            st.session_state.detailed_model = st.session_state.model_select
            
        def update_dataset():
            st.session_state.detailed_dataset = st.session_state.dataset_select

        col1, col2 = st.columns(2)
        with col1:
            selected_model_details = st.selectbox(
                "Select model",
                options=list(st.session_state.all_results.keys()),
                key="model_select",
                on_change=update_model,
                index=list(st.session_state.all_results.keys()).index(st.session_state.detailed_model) 
                    if st.session_state.detailed_model in st.session_state.all_results else 0
            )
        
        with col2:
            selected_dataset_details = st.selectbox(
                "Select dataset",
                options=[st.session_state.last_evaluated_dataset], 
                key="dataset_select",
                on_change=update_dataset
            )

        if selected_model_details in st.session_state.all_results:
            results = st.session_state.all_results[selected_model_details]
            df = pd.DataFrame(results)
            accuracy = df['is_correct'].mean()
            
            st.metric("Accuracy", f"{accuracy:.2%}")
            
            for idx, result in enumerate(results):
                with st.expander(f"Question {idx + 1} - {result['subject']}"):
                    st.write("**Question:**", result['question'])
                    st.write("**Options:**")
                    for i, opt in enumerate(result['options']):
                        st.write(f"{chr(65+i)}. {opt}")
                    
                    col1, col2 = st.columns(2)
                    with col1:
                        st.write("**Prompt Used:**")
                        st.code(result['prompt_sent'])
                    with col2:
                        st.write("**Raw Response:**")
                        st.code(result['raw_llm_response'])
                    
                    col1, col2 = st.columns(2)
                    with col1:
                        st.write("**Correct Answer:**", result['correct_answer'])
                        st.write("**Model Answer:**", result['model_response'])
                    with col2:
                        if result['is_correct']:
                            st.success("Correct!")
                        else:
                            st.error("Incorrect")
                    
                    st.write("**Explanation:**", result['explanation'])
        else:
            st.info(f"No results available for {selected_model_details} on {selected_dataset_details}. Please run the evaluation first.")

        st.markdown("---")
        all_data = []
        
        for model_name, results in st.session_state.all_results.items():
            for question_idx, result in enumerate(results):
                row = {
                    'dataset': st.session_state.last_evaluated_dataset, 
                    'model': model_name,
                    'question': result['question'],
                    'correct_answer': result['correct_answer'],
                    'subject': result['subject'],
                    'options': ' | '.join(result['options']),
                    'model_response': result['model_response'],
                    'is_correct': result['is_correct'],
                    'explanation': result['explanation']
                }
                all_data.append(row)

        complete_df = pd.DataFrame(all_data)
        
        csv = complete_df.to_csv(index=False)
        
        st.download_button(
            label="Download All Results as CSV",
            data=csv,
            file_name=f"all_models_{st.session_state.last_evaluated_dataset}_results.csv",
            mime="text/csv",
            key="download_all_results"
        )

if __name__ == "__main__":
    main()