egmaminta commited on
Commit
4e40fe7
·
1 Parent(s): acccf72

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -46,12 +46,12 @@ gradio.Interface(fn=classify,
46
  type='auto'),
47
  theme='grass',
48
  examples=[['bedroom.jpg'],
49
- ['cafe_shop.jpg'],
50
  ['samsung_room.jpg']],
51
  live=True,
52
  layout='horizontal',
53
  title='Indoor Scene Recognition',
54
- description='A smart and easy-to-use indoor scene classifier. Start by uploading an input image. The outputs are the top five indoor scene classes that best fit your input image.',
55
  article='''<h2>Additional Information</h2><p style='text-align: justify'>This indoor scene classifier employs the <b><a href='https://huggingface.co/google/vit-base-patch16-224-in21k' target='_blank'>google/vit-base-patch16-224-in21k</a></b>, a <b>Visual Transformer (ViT)</b> model pre-trained on <b><a href='https://github.com/Alibaba-MIIL/ImageNet21K' target='_blank'>ImageNet-21k</a></b> (14 million images, 21,843 classes) at a resolution of 224 pixels by 224 pixels and was first introduced in the paper <b><a href='https://arxiv.org/abs/2010.11929' target='_blank'>An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale</a></b> by Dosovitskiy et al. It was then fine-tuned on the <b><a href='https://www.kaggle.com/itsahmad/indoor-scenes-cvpr-2019' target='_blank'>MIT Indoor Scenes</a></b> data set from Kaggle. The source model used in this space is from <b><a href='https://huggingface.co/vincentclaes/mit-indoor-scenes' target='_blank'>vincentclaes/mit-indoor-scenes</a></b>.</p>
56
  <p style='text-align: justify'>For further research on the Visual Transformer, the original GitHub repository is found in <b><a href='https://github.com/google-research/vision_transformer' target='_blank'>this link</a></b>.</p>
57
  <h2>Disclaimer</h2>
 
46
  type='auto'),
47
  theme='grass',
48
  examples=[['bedroom.jpg'],
49
+ ['bathroom.jpg'],
50
  ['samsung_room.jpg']],
51
  live=True,
52
  layout='horizontal',
53
  title='Indoor Scene Recognition',
54
+ description='A smart and easy-to-use indoor scene classifier. Start by uploading an input image. The outputs are the top five indoor scene classes that best describe your input image.',
55
  article='''<h2>Additional Information</h2><p style='text-align: justify'>This indoor scene classifier employs the <b><a href='https://huggingface.co/google/vit-base-patch16-224-in21k' target='_blank'>google/vit-base-patch16-224-in21k</a></b>, a <b>Visual Transformer (ViT)</b> model pre-trained on <b><a href='https://github.com/Alibaba-MIIL/ImageNet21K' target='_blank'>ImageNet-21k</a></b> (14 million images, 21,843 classes) at a resolution of 224 pixels by 224 pixels and was first introduced in the paper <b><a href='https://arxiv.org/abs/2010.11929' target='_blank'>An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale</a></b> by Dosovitskiy et al. It was then fine-tuned on the <b><a href='https://www.kaggle.com/itsahmad/indoor-scenes-cvpr-2019' target='_blank'>MIT Indoor Scenes</a></b> data set from Kaggle. The source model used in this space is from <b><a href='https://huggingface.co/vincentclaes/mit-indoor-scenes' target='_blank'>vincentclaes/mit-indoor-scenes</a></b>.</p>
56
  <p style='text-align: justify'>For further research on the Visual Transformer, the original GitHub repository is found in <b><a href='https://github.com/google-research/vision_transformer' target='_blank'>this link</a></b>.</p>
57
  <h2>Disclaimer</h2>