Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
import json | |
import gradio as gr | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
#from gradio_space_ci import enable_space_ci | |
from src.display.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
FAQ_TEXT, | |
TITLE, | |
) | |
from src.display.changelog import CHANGELOG_TEXT | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
NUMERIC_INTERVALS, | |
TYPES, | |
AutoEvalColumn, | |
ModelType, | |
fields, | |
WeightType, | |
Precision, | |
Tasks, | |
Language | |
) | |
from src.envs import ( | |
API, | |
EVAL_REQUESTS_PATH, | |
DYNAMIC_INFO_REPO, | |
DYNAMIC_INFO_FILE_PATH, | |
DYNAMIC_INFO_PATH, | |
EVAL_RESULTS_PATH, | |
H4_TOKEN, IS_PUBLIC, | |
QUEUE_REPO, | |
REPO_ID, | |
RESULTS_REPO, | |
SHOW_INCOMPLETE_EVALS | |
) | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
from src.submission.submit import add_new_eval | |
from src.scripts.update_all_request_files import update_dynamic_files | |
from src.tools.collections import update_collections | |
from src.tools.plots import ( | |
create_metric_plot_obj, | |
create_plot_df, | |
create_scores_df, | |
create_lat_score_mem_plot_obj | |
) | |
# Start ephemeral Spaces on PRs (see config in README.md) | |
#enable_space_ci() | |
def restart_space(): | |
print("Running Restart") | |
try: | |
#API.restart_space(repo_id=REPO_ID, token=H4_TOKEN) | |
pass | |
except: | |
print("Restart failed") | |
def init_space(full_init: bool = True): | |
if full_init: | |
try: | |
print(EVAL_REQUESTS_PATH) | |
snapshot_download( | |
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 | |
) | |
except Exception: | |
restart_space() | |
try: | |
print(DYNAMIC_INFO_PATH) | |
snapshot_download( | |
repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 | |
) | |
except Exception: | |
restart_space() | |
try: | |
print(EVAL_RESULTS_PATH) | |
snapshot_download( | |
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 | |
) | |
except Exception: | |
restart_space() | |
# Init in case of empty | |
if not os.path.exists(DYNAMIC_INFO_FILE_PATH): | |
with open(DYNAMIC_INFO_FILE_PATH, "w") as f: | |
json.dump({}, f, indent=2) | |
raw_data, original_df = get_leaderboard_df( | |
results_path=EVAL_RESULTS_PATH, | |
requests_path=EVAL_REQUESTS_PATH, | |
dynamic_path=DYNAMIC_INFO_FILE_PATH, | |
cols=COLS, | |
benchmark_cols=BENCHMARK_COLS, | |
show_incomplete=SHOW_INCOMPLETE_EVALS | |
) | |
update_collections(original_df.copy()) | |
leaderboard_df = original_df.copy() | |
plot_df = create_plot_df(create_scores_df(raw_data)) | |
( | |
finished_eval_queue_df, | |
running_eval_queue_df, | |
pending_eval_queue_df, | |
failed_eval_queue_df | |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS, show_incomplete=SHOW_INCOMPLETE_EVALS) | |
return leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, failed_eval_queue_df | |
leaderboard_df, original_df, plot_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, failed_eval_queue_df = init_space() | |
# Searching and filtering | |
def update_table( | |
hidden_df: pd.DataFrame, | |
columns: list, | |
type_query: list, | |
precision_query: str, | |
size_query: list, | |
language_query: list, | |
hide_models: list, | |
query: str, | |
): | |
filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, language_query=language_query, precision_query=precision_query, hide_models=hide_models) | |
filtered_df = filter_queries(query, filtered_df) | |
filtered_df = update_leaderboard_avg_scores(filtered_df, columns) | |
df = select_columns(filtered_df, columns) | |
return df | |
def load_query(request: gr.Request): # triggered only once at startup => read query parameter if it exists | |
query = request.query_params.get("query") or "" | |
return query, query # return one for the "search_bar", one for a hidden component that triggers a reload only if value has changed | |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))] | |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] | |
dummy_col = [AutoEvalColumn.dummy.name] | |
#AutoEvalColumn.model_type_symbol.name, | |
#AutoEvalColumn.model.name, | |
# We use COLS to maintain sorting | |
filtered_df = df[ | |
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col | |
] | |
return filtered_df | |
def filter_queries(query: str, filtered_df: pd.DataFrame): | |
"""Added by Abishek""" | |
final_df = [] | |
if query != "": | |
queries = [q.strip() for q in query.split(";")] | |
for _q in queries: | |
_q = _q.strip() | |
if _q != "": | |
temp_filtered_df = search_table(filtered_df, _q) | |
if len(temp_filtered_df) > 0: | |
final_df.append(temp_filtered_df) | |
if len(final_df) > 0: | |
filtered_df = pd.concat(final_df) | |
filtered_df = filtered_df.drop_duplicates( | |
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] | |
) | |
return filtered_df | |
def filter_models( | |
df: pd.DataFrame, type_query: list, size_query: list, language_query: list, precision_query: list, hide_models: list | |
) -> pd.DataFrame: | |
# Show all models | |
if "Private or deleted" in hide_models: | |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True] | |
else: | |
filtered_df = df | |
if "Contains a merge/moerge" in hide_models: | |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False] | |
if "MoE" in hide_models: | |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.moe.name] == False] | |
if "Flagged" in hide_models: | |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False] | |
if "Proprietary" in hide_models: | |
filtered_df = filtered_df[filtered_df[AutoEvalColumn.license.name] != "Proprietary"] | |
type_emoji = [t[0] for t in type_query] | |
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] | |
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] | |
filtered_df = filtered_df.loc[df[AutoEvalColumn.main_language.name].isin(language_query + ["None"])] | |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) | |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") | |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) | |
filtered_df = filtered_df.loc[mask] | |
return filtered_df | |
def update_leaderboard_avg_scores(df, columns): | |
new_df = df.copy() | |
#update average with tasks in shown columns | |
task_columns = [] | |
task_baseline = [] | |
for task in Tasks: | |
column_name = getattr(AutoEvalColumn, task.name).name | |
if column_name in columns: | |
task_columns.append(column_name) | |
task_baseline.append(task.value.baseline) | |
new_df[AutoEvalColumn.average.name] = new_df[task_columns].mean(axis=1).apply(lambda x: round(x, 2)) | |
new_df[AutoEvalColumn.npm.name] = (((new_df[task_columns] - task_baseline) / [100.0 - t for t in task_baseline]).mean(axis=1) * 100).apply(lambda x: round(x, 2)) | |
return new_df | |
leaderboard_df = filter_models( | |
df=leaderboard_df, | |
type_query=[t.to_str(" : ") for t in ModelType], | |
size_query=list(NUMERIC_INTERVALS.keys()), | |
precision_query=[i.value.name for i in Precision], | |
language_query=[i.value.name for i in Language], | |
hide_models=["Flagged"], # "Private or deleted", "Contains a merge/moerge", "Flagged" | |
) | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...", | |
show_label=False, | |
elem_id="search-bar", | |
) | |
with gr.Row(): | |
shown_columns = gr.CheckboxGroup( | |
choices=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if not c.hidden and not c.never_hidden and not c.dummy | |
], | |
value=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if c.displayed_by_default and not c.hidden and not c.never_hidden | |
], | |
label="Select columns to show", | |
elem_id="column-select", | |
interactive=True, | |
) | |
with gr.Row(): | |
hide_models = gr.CheckboxGroup( | |
label="Hide models", | |
choices = ["Proprietary", "Private or deleted", "Contains a merge/moerge", "Flagged", "MoE"], | |
value=["Flagged"], | |
interactive=True | |
) | |
with gr.Column(min_width=320): | |
#with gr.Box(elem_id="box-filter"): | |
filter_columns_type = gr.CheckboxGroup( | |
label="Model types", | |
choices=[t.to_str() for t in ModelType], | |
value=[t.to_str() for t in ModelType], | |
interactive=True, | |
elem_id="filter-columns-type", | |
) | |
filter_columns_precision = gr.CheckboxGroup( | |
label="Precision", | |
choices=[i.value.name for i in Precision], | |
value=[i.value.name for i in Precision], | |
interactive=True, | |
elem_id="filter-columns-precision", | |
) | |
filter_columns_size = gr.CheckboxGroup( | |
label="Model sizes (in billions of parameters)", | |
choices=list(NUMERIC_INTERVALS.keys()), | |
value=list(NUMERIC_INTERVALS.keys()), | |
interactive=True, | |
elem_id="filter-columns-size", | |
) | |
filter_columns_language = gr.CheckboxGroup( | |
label="Model Main Language", | |
choices=[i.value.name for i in Language], | |
value=[i.value.name for i in Language], | |
interactive=True, | |
elem_id="filter-columns-language", | |
) | |
leaderboard_table = gr.components.Dataframe( | |
value=leaderboard_df[ | |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden] | |
+ shown_columns.value | |
+ [AutoEvalColumn.dummy.name] | |
], | |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
datatype=TYPES, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
#column_widths=["2%", "33%"] | |
) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
value=original_df[COLS], | |
headers=COLS, | |
datatype=TYPES, | |
visible=False, | |
) | |
search_bar.submit( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
filter_columns_type, | |
filter_columns_precision, | |
filter_columns_size, | |
filter_columns_language, | |
hide_models, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
# Define a hidden component that will trigger a reload only if a query parameter has been set | |
hidden_search_bar = gr.Textbox(value="", visible=False) | |
hidden_search_bar.change( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
filter_columns_type, | |
filter_columns_precision, | |
filter_columns_size, | |
filter_columns_language, | |
hide_models, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
# Check query parameter once at startup and update search bar + hidden component | |
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar]) | |
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, filter_columns_language, hide_models]: | |
selector.change( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
filter_columns_type, | |
filter_columns_precision, | |
filter_columns_size, | |
filter_columns_language, | |
hide_models, | |
search_bar, | |
], | |
leaderboard_table, | |
queue=True, | |
) | |
with gr.TabItem("π Metrics", elem_id="llm-benchmark-tab-table", id=4): | |
with gr.Row(): | |
with gr.Column(): | |
chart = create_metric_plot_obj( | |
plot_df, | |
[AutoEvalColumn.average.name], | |
title="Average of Top Scores and Human Baseline Over Time (from last update)", | |
) | |
gr.Plot(value=chart, min_width=500) | |
with gr.Column(): | |
chart = create_metric_plot_obj( | |
plot_df, | |
BENCHMARK_COLS, | |
title="Top Scores and Human Baseline Over Time (from last update)", | |
) | |
gr.Plot(value=chart, min_width=500) | |
with gr.Row(): | |
with gr.Column(): | |
fig = create_lat_score_mem_plot_obj(leaderboard_df) | |
plot = gr.components.Plot( | |
value=fig, | |
elem_id="plot", | |
show_label=False, | |
) | |
gr.HTML("π Hover over the points π for additional information. ",elem_id="text") | |
gr.HTML('This plot the Evaluation Time from our backend GPU (Nvdia A100-80G) to run all the benchmarks, it\'s not a very precise performance benchmark of the models, for that look for the <a href="https://huggingface.co/spaces/optimum/llm-perf-leaderboard" target="_blank">π€ LLM-Perf Leaderboard</a>',elem_id="text") | |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Column(): | |
with gr.Accordion( | |
f"β Finished Evaluations ({len(finished_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
finished_eval_table = gr.components.Dataframe( | |
value=finished_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"π Running Evaluation Queue ({len(running_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
running_eval_table = gr.components.Dataframe( | |
value=running_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
pending_eval_table = gr.components.Dataframe( | |
value=pending_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"β Failed Evaluations ({len(failed_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
failed_eval_table = gr.components.Dataframe( | |
value=failed_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Row(): | |
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
model_name_textbox = gr.Textbox(label="Model name") | |
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | |
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC) | |
model_type = gr.Dropdown( | |
choices=[t.to_str(" : ") for t in ModelType if t not in [ModelType.Unknown, ModelType.proprietary]], | |
label="Model type", | |
multiselect=False, | |
value=ModelType.FT.to_str(" : "), | |
interactive=True, | |
) | |
main_language = gr.Dropdown( | |
choices=[i.value.name for i in Language if i != Language.Unknown], | |
label="Main Language", | |
multiselect=False, | |
value="English", | |
interactive=True, | |
) | |
with gr.Column(): | |
precision = gr.Dropdown( | |
choices=[i.value.name for i in Precision if i != Precision.Unknown], | |
label="Precision", | |
multiselect=False, | |
value="float16", | |
interactive=True, | |
) | |
weight_type = gr.Dropdown( | |
choices=[i.value.name for i in WeightType], | |
label="Weights type", | |
multiselect=False, | |
value="Original", | |
interactive=True, | |
) | |
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") | |
submit_button = gr.Button("Submit Eval") | |
submission_result = gr.Markdown() | |
submit_button.click( | |
add_new_eval, | |
[ | |
model_name_textbox, | |
base_model_name_textbox, | |
revision_name_textbox, | |
precision, | |
private, | |
weight_type, | |
model_type, | |
main_language | |
], | |
submission_result, | |
) | |
with gr.TabItem("β³ Changelog", elem_id="llm-benchmark-tab-table", id=5): | |
gr.Markdown(CHANGELOG_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
def update_dynamic_files_wrapper(): | |
try: | |
return update_dynamic_files() | |
except Exception as e: | |
print(f"Error updating dynamic files: {e}") | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=10800) # restarted every 3h | |
scheduler.add_job(update_dynamic_files_wrapper, "cron", minute=30) # launched every hour on the hour | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() |