WuChengyue commited on
Commit
830d0b4
·
verified ·
1 Parent(s): 611a9c6

Upload 4 files

Browse files
Files changed (4) hide show
  1. app.py +232 -0
  2. doge.png +0 -0
  3. equation.png +0 -0
  4. requirements.txt +8 -0
app.py ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import AutoConfig, AutoModelForCausalLM
4
+ from janus.models import MultiModalityCausalLM, VLChatProcessor
5
+ from janus.utils.io import load_pil_images
6
+ from PIL import Image
7
+
8
+ import numpy as np
9
+ import os
10
+ import spaces # Import spaces for ZeroGPU compatibility
11
+
12
+
13
+ # Load model and processor
14
+ model_path = "deepseek-ai/Janus-1.3B"
15
+ config = AutoConfig.from_pretrained(model_path)
16
+ language_config = config.language_config
17
+ language_config._attn_implementation = 'eager'
18
+ vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,
19
+ language_config=language_config,
20
+ trust_remote_code=True)
21
+ if torch.cuda.is_available():
22
+ vl_gpt = vl_gpt.to(torch.bfloat16).cuda()
23
+ else:
24
+ vl_gpt = vl_gpt.to(torch.float16)
25
+
26
+ vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
27
+ tokenizer = vl_chat_processor.tokenizer
28
+ cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
29
+ # Multimodal Understanding function
30
+ @torch.inference_mode()
31
+ @spaces.GPU(duration=120)
32
+ # Multimodal Understanding function
33
+ def multimodal_understanding(image, question, seed, top_p, temperature):
34
+ # Clear CUDA cache before generating
35
+ torch.cuda.empty_cache()
36
+
37
+ # set seed
38
+ torch.manual_seed(seed)
39
+ np.random.seed(seed)
40
+ torch.cuda.manual_seed(seed)
41
+
42
+ conversation = [
43
+ {
44
+ "role": "User",
45
+ "content": f"<image_placeholder>\n{question}",
46
+ "images": [image],
47
+ },
48
+ {"role": "Assistant", "content": ""},
49
+ ]
50
+
51
+ pil_images = [Image.fromarray(image)]
52
+ prepare_inputs = vl_chat_processor(
53
+ conversations=conversation, images=pil_images, force_batchify=True
54
+ ).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
55
+
56
+
57
+ inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
58
+
59
+ outputs = vl_gpt.language_model.generate(
60
+ inputs_embeds=inputs_embeds,
61
+ attention_mask=prepare_inputs.attention_mask,
62
+ pad_token_id=tokenizer.eos_token_id,
63
+ bos_token_id=tokenizer.bos_token_id,
64
+ eos_token_id=tokenizer.eos_token_id,
65
+ max_new_tokens=512,
66
+ do_sample=False if temperature == 0 else True,
67
+ use_cache=True,
68
+ temperature=temperature,
69
+ top_p=top_p,
70
+ )
71
+
72
+ answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
73
+ return answer
74
+
75
+
76
+ def generate(input_ids,
77
+ width,
78
+ height,
79
+ temperature: float = 1,
80
+ parallel_size: int = 5,
81
+ cfg_weight: float = 5,
82
+ image_token_num_per_image: int = 576,
83
+ patch_size: int = 16):
84
+ # Clear CUDA cache before generating
85
+ torch.cuda.empty_cache()
86
+
87
+ tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
88
+ for i in range(parallel_size * 2):
89
+ tokens[i, :] = input_ids
90
+ if i % 2 != 0:
91
+ tokens[i, 1:-1] = vl_chat_processor.pad_id
92
+ inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
93
+ generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device)
94
+
95
+ pkv = None
96
+ for i in range(image_token_num_per_image):
97
+ outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds,
98
+ use_cache=True,
99
+ past_key_values=pkv)
100
+ pkv = outputs.past_key_values
101
+ hidden_states = outputs.last_hidden_state
102
+ logits = vl_gpt.gen_head(hidden_states[:, -1, :])
103
+ logit_cond = logits[0::2, :]
104
+ logit_uncond = logits[1::2, :]
105
+ logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
106
+ probs = torch.softmax(logits / temperature, dim=-1)
107
+ next_token = torch.multinomial(probs, num_samples=1)
108
+ generated_tokens[:, i] = next_token.squeeze(dim=-1)
109
+ next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
110
+ img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
111
+ inputs_embeds = img_embeds.unsqueeze(dim=1)
112
+ patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
113
+ shape=[parallel_size, 8, width // patch_size, height // patch_size])
114
+
115
+ return generated_tokens.to(dtype=torch.int), patches
116
+
117
+ def unpack(dec, width, height, parallel_size=5):
118
+ dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
119
+ dec = np.clip((dec + 1) / 2 * 255, 0, 255)
120
+
121
+ visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
122
+ visual_img[:, :, :] = dec
123
+
124
+ return visual_img
125
+
126
+
127
+
128
+ @torch.inference_mode()
129
+ @spaces.GPU(duration=120) # Specify a duration to avoid timeout
130
+ def generate_image(prompt,
131
+ seed=None,
132
+ guidance=5):
133
+ # Clear CUDA cache and avoid tracking gradients
134
+ torch.cuda.empty_cache()
135
+ # Set the seed for reproducible results
136
+ if seed is not None:
137
+ torch.manual_seed(seed)
138
+ torch.cuda.manual_seed(seed)
139
+ np.random.seed(seed)
140
+ width = 384
141
+ height = 384
142
+ parallel_size = 5
143
+
144
+ with torch.no_grad():
145
+ messages = [{'role': 'User', 'content': prompt},
146
+ {'role': 'Assistant', 'content': ''}]
147
+ text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(conversations=messages,
148
+ sft_format=vl_chat_processor.sft_format,
149
+ system_prompt='')
150
+ text = text + vl_chat_processor.image_start_tag
151
+ input_ids = torch.LongTensor(tokenizer.encode(text))
152
+ output, patches = generate(input_ids,
153
+ width // 16 * 16,
154
+ height // 16 * 16,
155
+ cfg_weight=guidance,
156
+ parallel_size=parallel_size)
157
+ images = unpack(patches,
158
+ width // 16 * 16,
159
+ height // 16 * 16)
160
+
161
+ return [Image.fromarray(images[i]).resize((1024, 1024), Image.LANCZOS) for i in range(parallel_size)]
162
+
163
+
164
+
165
+ # Gradio interface
166
+ with gr.Blocks() as demo:
167
+ gr.Markdown(value="# Multimodal Understanding")
168
+ # with gr.Row():
169
+ with gr.Row():
170
+ image_input = gr.Image()
171
+ with gr.Column():
172
+ question_input = gr.Textbox(label="Question")
173
+ und_seed_input = gr.Number(label="Seed", precision=0, value=42)
174
+ top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
175
+ temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")
176
+
177
+ understanding_button = gr.Button("Chat")
178
+ understanding_output = gr.Textbox(label="Response")
179
+
180
+ examples_inpainting = gr.Examples(
181
+ label="Multimodal Understanding examples",
182
+ examples=[
183
+ [
184
+ "explain this meme",
185
+ "doge.png",
186
+ ],
187
+ [
188
+ "Convert the formula into latex code.",
189
+ "equation.png",
190
+ ],
191
+ ],
192
+ inputs=[question_input, image_input],
193
+ )
194
+
195
+
196
+ gr.Markdown(value="# Text-to-Image Generation")
197
+
198
+
199
+
200
+ with gr.Row():
201
+ cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
202
+
203
+ prompt_input = gr.Textbox(label="Prompt")
204
+ seed_input = gr.Number(label="Seed (Optional)", precision=0, value=12345)
205
+
206
+ generation_button = gr.Button("Generate Images")
207
+
208
+ image_output = gr.Gallery(label="Generated Images", columns=2, rows=2, height=300)
209
+
210
+ examples_t2i = gr.Examples(
211
+ label="Text to image generation examples. (Tips for designing prompts: Adding description like 'digital art' at the end of the prompt or writing the prompt in more detail can help produce better images!)",
212
+ examples=[
213
+ "Master shifu racoon wearing drip attire as a street gangster.",
214
+ "A cute and adorable baby fox with big brown eyes, autumn leaves in the background enchanting,immortal,fluffy, shiny mane,Petals,fairyism,unreal engine 5 and Octane Render,highly detailed, photorealistic, cinematic, natural colors.",
215
+ "The image features an intricately designed eye set against a circular backdrop adorned with ornate swirl patterns that evoke both realism and surrealism. At the center of attention is a strikingly vivid blue iris surrounded by delicate veins radiating outward from the pupil to create depth and intensity. The eyelashes are long and dark, casting subtle shadows on the skin around them which appears smooth yet slightly textured as if aged or weathered over time.\n\nAbove the eye, there's a stone-like structure resembling part of classical architecture, adding layers of mystery and timeless elegance to the composition. This architectural element contrasts sharply but harmoniously with the organic curves surrounding it. Below the eye lies another decorative motif reminiscent of baroque artistry, further enhancing the overall sense of eternity encapsulated within each meticulously crafted detail. \n\nOverall, the atmosphere exudes a mysterious aura intertwined seamlessly with elements suggesting timelessness, achieved through the juxtaposition of realistic textures and surreal artistic flourishes. Each component\u2014from the intricate designs framing the eye to the ancient-looking stone piece above\u2014contributes uniquely towards creating a visually captivating tableau imbued with enigmatic allure.",
216
+ ],
217
+ inputs=prompt_input,
218
+ )
219
+
220
+ understanding_button.click(
221
+ multimodal_understanding,
222
+ inputs=[image_input, question_input, und_seed_input, top_p, temperature],
223
+ outputs=understanding_output
224
+ )
225
+
226
+ generation_button.click(
227
+ fn=generate_image,
228
+ inputs=[prompt_input, seed_input, cfg_weight_input],
229
+ outputs=image_output
230
+ )
231
+
232
+ demo.launch(share=True)
doge.png ADDED
equation.png ADDED
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ accelerate
2
+ diffusers
3
+ gradio
4
+ numpy
5
+ torch
6
+ safetensors
7
+ transformers
8
+ git+https://github.com/deepseek-ai/Janus