Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from mingru_lm import MinGRU_LM | |
# Load the model | |
model = MinGRU_LM(dim=512, num_tokens=256, num_layers=6) | |
pt_model = "best_model.pt" | |
checkpoint = torch.load(pt_model, map_location=torch.device('cpu')) | |
model.load_state_dict(checkpoint['model_state_dict']) | |
# Move model to GPU if available | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model = model.to(device) | |
def decode_tokens(tokens): | |
return ''.join([chr(token) for token in tokens if token >= 32 and token < 256]) # ASCII-safe decoding | |
def tokenize_text(text): | |
return [ord(char) for char in text if ord(char) < 256] # ASCII-safe tokenization | |
def generate_text(start_text, max_length, temperature): | |
model.eval() | |
tokens = tokenize_text(start_text) | |
input_tensor = torch.tensor(tokens, dtype=torch.long).unsqueeze(0).to(device) # Ensure long tensor | |
generated_tokens = tokens.copy() | |
# Use a generator to yield tokens one by one | |
for _ in range(max_length): | |
with torch.no_grad(): | |
logits = model(input_tensor, labels=None)[1] # Get logits directly | |
last_token_logits = logits[0, -1, :] / temperature | |
probs = torch.softmax(last_token_logits, dim=-1) | |
# Sample the next token | |
next_token = torch.multinomial(probs, num_samples=1).item() | |
# Only append valid tokens | |
if next_token < 256: | |
generated_tokens.append(next_token) | |
input_tensor = torch.cat([input_tensor, torch.tensor([[next_token]], device=device)], dim=1) | |
yield decode_tokens(generated_tokens) | |
else: | |
continue # Skip tokens outside ASCII range | |
yield decode_tokens(generated_tokens) | |
def wrapper_generate_text(start_text, max_length, temperature): | |
async_gen = generate_text(start_text, max_length, temperature) | |
for output in async_gen: | |
yield output | |
# Gradio interface | |
with gr.Blocks() as iface: | |
gr.Markdown("The MinGRU model is a simplified version of the traditional Gated Recurrent Unit (GRU), designed to reduce complexity and improve efficiency,Trained on the [tiny-stories](https://huggingface.co/datasets/roneneldan/TinyStories?row=19)") | |
gr.Markdown("To Learn more visit this [github](https://github.com/dame-cell/MinGru/tree/main)") | |
with gr.Row(): | |
textbox = gr.Textbox(lines=3, label="Enter your prompt", value="Once upon a time") | |
max_length = gr.Slider(minimum=10, maximum=500, value=200, step=1, label="Max Length") | |
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") | |
output_textbox = gr.Textbox(lines=10, label="Generated Text") | |
btn = gr.Button("Generate Text") | |
btn.click( | |
wrapper_generate_text, | |
inputs=[textbox, max_length, temperature], | |
outputs=output_textbox | |
) | |
iface.launch(show_api=False, server_name="0.0.0.0") | |