curt-park's picture
Refactor code
1615d09
raw
history blame
2.42 kB
import numpy as np
import torch
from .log import logger
def get_dims_with_exclusion(dim, exclude=None):
dims = list(range(dim))
if exclude is not None:
dims.remove(exclude)
return dims
def save_checkpoint(
net, checkpoints_path, epoch=None, prefix="", verbose=True, multi_gpu=False
):
if epoch is None:
checkpoint_name = "last_checkpoint.pth"
else:
checkpoint_name = f"{epoch:03d}.pth"
if prefix:
checkpoint_name = f"{prefix}_{checkpoint_name}"
if not checkpoints_path.exists():
checkpoints_path.mkdir(parents=True)
checkpoint_path = checkpoints_path / checkpoint_name
if verbose:
logger.info(f"Save checkpoint to {str(checkpoint_path)}")
net = net.module if multi_gpu else net
torch.save(
{"state_dict": net.state_dict(), "config": net._config}, str(checkpoint_path)
)
def get_bbox_from_mask(mask):
rows = np.any(mask, axis=1)
cols = np.any(mask, axis=0)
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
return rmin, rmax, cmin, cmax
def expand_bbox(bbox, expand_ratio, min_crop_size=None):
rmin, rmax, cmin, cmax = bbox
rcenter = 0.5 * (rmin + rmax)
ccenter = 0.5 * (cmin + cmax)
height = expand_ratio * (rmax - rmin + 1)
width = expand_ratio * (cmax - cmin + 1)
if min_crop_size is not None:
height = max(height, min_crop_size)
width = max(width, min_crop_size)
rmin = int(round(rcenter - 0.5 * height))
rmax = int(round(rcenter + 0.5 * height))
cmin = int(round(ccenter - 0.5 * width))
cmax = int(round(ccenter + 0.5 * width))
return rmin, rmax, cmin, cmax
def clamp_bbox(bbox, rmin, rmax, cmin, cmax):
return (
max(rmin, bbox[0]),
min(rmax, bbox[1]),
max(cmin, bbox[2]),
min(cmax, bbox[3]),
)
def get_bbox_iou(b1, b2):
h_iou = get_segments_iou(b1[:2], b2[:2])
w_iou = get_segments_iou(b1[2:4], b2[2:4])
return h_iou * w_iou
def get_segments_iou(s1, s2):
a, b = s1
c, d = s2
intersection = max(0, min(b, d) - max(a, c) + 1)
union = max(1e-6, max(b, d) - min(a, c) + 1)
return intersection / union
def get_labels_with_sizes(x):
obj_sizes = np.bincount(x.flatten())
labels = np.nonzero(obj_sizes)[0].tolist()
labels = [x for x in labels if x != 0]
return labels, obj_sizes[labels].tolist()