Spaces:
Runtime error
Runtime error
""" Twins | |
A PyTorch impl of : `Twins: Revisiting the Design of Spatial Attention in Vision Transformers` | |
- https://arxiv.org/pdf/2104.13840.pdf | |
Code/weights from https://github.com/Meituan-AutoML/Twins, original copyright/license info below | |
""" | |
# -------------------------------------------------------- | |
# Twins | |
# Copyright (c) 2021 Meituan | |
# Licensed under The Apache 2.0 License [see LICENSE for details] | |
# Written by Xinjie Li, Xiangxiang Chu | |
# -------------------------------------------------------- | |
import math | |
from copy import deepcopy | |
from typing import Optional, Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from functools import partial | |
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .layers import Mlp, DropPath, to_2tuple, trunc_normal_ | |
from .registry import register_model | |
from .vision_transformer import Attention | |
from .helpers import build_model_with_cfg, overlay_external_default_cfg | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'patch_embeds.0.proj', 'classifier': 'head', | |
**kwargs | |
} | |
default_cfgs = { | |
'twins_pcpvt_small': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_pcpvt_small-e70e7e7a.pth', | |
), | |
'twins_pcpvt_base': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_pcpvt_base-e5ecb09b.pth', | |
), | |
'twins_pcpvt_large': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_pcpvt_large-d273f802.pth', | |
), | |
'twins_svt_small': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_svt_small-42e5f78c.pth', | |
), | |
'twins_svt_base': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_svt_base-c2265010.pth', | |
), | |
'twins_svt_large': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_svt_large-90f6aaa9.pth', | |
), | |
} | |
Size_ = Tuple[int, int] | |
class LocallyGroupedAttn(nn.Module): | |
""" LSA: self attention within a group | |
""" | |
def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., ws=1): | |
assert ws != 1 | |
super(LocallyGroupedAttn, self).__init__() | |
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." | |
self.dim = dim | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=True) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.ws = ws | |
def forward(self, x, size: Size_): | |
# There are two implementations for this function, zero padding or mask. We don't observe obvious difference for | |
# both. You can choose any one, we recommend forward_padding because it's neat. However, | |
# the masking implementation is more reasonable and accurate. | |
B, N, C = x.shape | |
H, W = size | |
x = x.view(B, H, W, C) | |
pad_l = pad_t = 0 | |
pad_r = (self.ws - W % self.ws) % self.ws | |
pad_b = (self.ws - H % self.ws) % self.ws | |
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) | |
_, Hp, Wp, _ = x.shape | |
_h, _w = Hp // self.ws, Wp // self.ws | |
x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3) | |
qkv = self.qkv(x).reshape( | |
B, _h * _w, self.ws * self.ws, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5) | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C) | |
x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C) | |
if pad_r > 0 or pad_b > 0: | |
x = x[:, :H, :W, :].contiguous() | |
x = x.reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
# def forward_mask(self, x, size: Size_): | |
# B, N, C = x.shape | |
# H, W = size | |
# x = x.view(B, H, W, C) | |
# pad_l = pad_t = 0 | |
# pad_r = (self.ws - W % self.ws) % self.ws | |
# pad_b = (self.ws - H % self.ws) % self.ws | |
# x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) | |
# _, Hp, Wp, _ = x.shape | |
# _h, _w = Hp // self.ws, Wp // self.ws | |
# mask = torch.zeros((1, Hp, Wp), device=x.device) | |
# mask[:, -pad_b:, :].fill_(1) | |
# mask[:, :, -pad_r:].fill_(1) | |
# | |
# x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3) # B, _h, _w, ws, ws, C | |
# mask = mask.reshape(1, _h, self.ws, _w, self.ws).transpose(2, 3).reshape(1, _h * _w, self.ws * self.ws) | |
# attn_mask = mask.unsqueeze(2) - mask.unsqueeze(3) # 1, _h*_w, ws*ws, ws*ws | |
# attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-1000.0)).masked_fill(attn_mask == 0, float(0.0)) | |
# qkv = self.qkv(x).reshape( | |
# B, _h * _w, self.ws * self.ws, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5) | |
# # n_h, B, _w*_h, nhead, ws*ws, dim | |
# q, k, v = qkv[0], qkv[1], qkv[2] # B, _h*_w, n_head, ws*ws, dim_head | |
# attn = (q @ k.transpose(-2, -1)) * self.scale # B, _h*_w, n_head, ws*ws, ws*ws | |
# attn = attn + attn_mask.unsqueeze(2) | |
# attn = attn.softmax(dim=-1) | |
# attn = self.attn_drop(attn) # attn @v -> B, _h*_w, n_head, ws*ws, dim_head | |
# attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C) | |
# x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C) | |
# if pad_r > 0 or pad_b > 0: | |
# x = x[:, :H, :W, :].contiguous() | |
# x = x.reshape(B, N, C) | |
# x = self.proj(x) | |
# x = self.proj_drop(x) | |
# return x | |
class GlobalSubSampleAttn(nn.Module): | |
""" GSA: using a key to summarize the information for a group to be efficient. | |
""" | |
def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., sr_ratio=1): | |
super().__init__() | |
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." | |
self.dim = dim | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim ** -0.5 | |
self.q = nn.Linear(dim, dim, bias=True) | |
self.kv = nn.Linear(dim, dim * 2, bias=True) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.sr_ratio = sr_ratio | |
if sr_ratio > 1: | |
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) | |
self.norm = nn.LayerNorm(dim) | |
else: | |
self.sr = None | |
self.norm = None | |
def forward(self, x, size: Size_): | |
B, N, C = x.shape | |
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | |
if self.sr is not None: | |
x = x.permute(0, 2, 1).reshape(B, C, *size) | |
x = self.sr(x).reshape(B, C, -1).permute(0, 2, 1) | |
x = self.norm(x) | |
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
k, v = kv[0], kv[1] | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., drop=0., attn_drop=0., drop_path=0., | |
act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, ws=None): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
if ws is None: | |
self.attn = Attention(dim, num_heads, False, None, attn_drop, drop) | |
elif ws == 1: | |
self.attn = GlobalSubSampleAttn(dim, num_heads, attn_drop, drop, sr_ratio) | |
else: | |
self.attn = LocallyGroupedAttn(dim, num_heads, attn_drop, drop, ws) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, x, size: Size_): | |
x = x + self.drop_path(self.attn(self.norm1(x), size)) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class PosConv(nn.Module): | |
# PEG from https://arxiv.org/abs/2102.10882 | |
def __init__(self, in_chans, embed_dim=768, stride=1): | |
super(PosConv, self).__init__() | |
self.proj = nn.Sequential(nn.Conv2d(in_chans, embed_dim, 3, stride, 1, bias=True, groups=embed_dim), ) | |
self.stride = stride | |
def forward(self, x, size: Size_): | |
B, N, C = x.shape | |
cnn_feat_token = x.transpose(1, 2).view(B, C, *size) | |
x = self.proj(cnn_feat_token) | |
if self.stride == 1: | |
x += cnn_feat_token | |
x = x.flatten(2).transpose(1, 2) | |
return x | |
def no_weight_decay(self): | |
return ['proj.%d.weight' % i for i in range(4)] | |
class PatchEmbed(nn.Module): | |
""" Image to Patch Embedding | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \ | |
f"img_size {img_size} should be divided by patch_size {patch_size}." | |
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1] | |
self.num_patches = self.H * self.W | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
self.norm = nn.LayerNorm(embed_dim) | |
def forward(self, x) -> Tuple[torch.Tensor, Size_]: | |
B, C, H, W = x.shape | |
x = self.proj(x).flatten(2).transpose(1, 2) | |
x = self.norm(x) | |
out_size = (H // self.patch_size[0], W // self.patch_size[1]) | |
return x, out_size | |
class Twins(nn.Module): | |
""" Twins Vision Transfomer (Revisiting Spatial Attention) | |
Adapted from PVT (PyramidVisionTransformer) class at https://github.com/whai362/PVT.git | |
""" | |
def __init__( | |
self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dims=(64, 128, 256, 512), | |
num_heads=(1, 2, 4, 8), mlp_ratios=(4, 4, 4, 4), drop_rate=0., attn_drop_rate=0., drop_path_rate=0., | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=(3, 4, 6, 3), sr_ratios=(8, 4, 2, 1), wss=None, | |
block_cls=Block): | |
super().__init__() | |
self.num_classes = num_classes | |
self.depths = depths | |
self.embed_dims = embed_dims | |
self.num_features = embed_dims[-1] | |
img_size = to_2tuple(img_size) | |
prev_chs = in_chans | |
self.patch_embeds = nn.ModuleList() | |
self.pos_drops = nn.ModuleList() | |
for i in range(len(depths)): | |
self.patch_embeds.append(PatchEmbed(img_size, patch_size, prev_chs, embed_dims[i])) | |
self.pos_drops.append(nn.Dropout(p=drop_rate)) | |
prev_chs = embed_dims[i] | |
img_size = tuple(t // patch_size for t in img_size) | |
patch_size = 2 | |
self.blocks = nn.ModuleList() | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule | |
cur = 0 | |
for k in range(len(depths)): | |
_block = nn.ModuleList([block_cls( | |
dim=embed_dims[k], num_heads=num_heads[k], mlp_ratio=mlp_ratios[k], drop=drop_rate, | |
attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[k], | |
ws=1 if wss is None or i % 2 == 1 else wss[k]) for i in range(depths[k])]) | |
self.blocks.append(_block) | |
cur += depths[k] | |
self.pos_block = nn.ModuleList([PosConv(embed_dim, embed_dim) for embed_dim in embed_dims]) | |
self.norm = norm_layer(self.num_features) | |
# classification head | |
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
# init weights | |
self.apply(self._init_weights) | |
def no_weight_decay(self): | |
return set(['pos_block.' + n for n, p in self.pos_block.named_parameters()]) | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=''): | |
self.num_classes = num_classes | |
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
elif isinstance(m, nn.Conv2d): | |
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
fan_out //= m.groups | |
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) | |
if m.bias is not None: | |
m.bias.data.zero_() | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1.0) | |
m.bias.data.zero_() | |
def forward_features(self, x): | |
B = x.shape[0] | |
for i, (embed, drop, blocks, pos_blk) in enumerate( | |
zip(self.patch_embeds, self.pos_drops, self.blocks, self.pos_block)): | |
x, size = embed(x) | |
x = drop(x) | |
for j, blk in enumerate(blocks): | |
x = blk(x, size) | |
if j == 0: | |
x = pos_blk(x, size) # PEG here | |
if i < len(self.depths) - 1: | |
x = x.reshape(B, *size, -1).permute(0, 3, 1, 2).contiguous() | |
x = self.norm(x) | |
return x.mean(dim=1) # GAP here | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.head(x) | |
return x | |
def _create_twins(variant, pretrained=False, **kwargs): | |
if kwargs.get('features_only', None): | |
raise RuntimeError('features_only not implemented for Vision Transformer models.') | |
model = build_model_with_cfg( | |
Twins, variant, pretrained, | |
default_cfg=default_cfgs[variant], | |
**kwargs) | |
return model | |
def twins_pcpvt_small(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], | |
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], **kwargs) | |
return _create_twins('twins_pcpvt_small', pretrained=pretrained, **model_kwargs) | |
def twins_pcpvt_base(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], | |
depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], **kwargs) | |
return _create_twins('twins_pcpvt_base', pretrained=pretrained, **model_kwargs) | |
def twins_pcpvt_large(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], | |
depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1], **kwargs) | |
return _create_twins('twins_pcpvt_large', pretrained=pretrained, **model_kwargs) | |
def twins_svt_small(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
patch_size=4, embed_dims=[64, 128, 256, 512], num_heads=[2, 4, 8, 16], mlp_ratios=[4, 4, 4, 4], | |
depths=[2, 2, 10, 4], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs) | |
return _create_twins('twins_svt_small', pretrained=pretrained, **model_kwargs) | |
def twins_svt_base(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
patch_size=4, embed_dims=[96, 192, 384, 768], num_heads=[3, 6, 12, 24], mlp_ratios=[4, 4, 4, 4], | |
depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs) | |
return _create_twins('twins_svt_base', pretrained=pretrained, **model_kwargs) | |
def twins_svt_large(pretrained=False, **kwargs): | |
model_kwargs = dict( | |
patch_size=4, embed_dims=[128, 256, 512, 1024], num_heads=[4, 8, 16, 32], mlp_ratios=[4, 4, 4, 4], | |
depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs) | |
return _create_twins('twins_svt_large', pretrained=pretrained, **model_kwargs) | |