Spaces:
Runtime error
Runtime error
""" Swin Transformer | |
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` | |
- https://arxiv.org/pdf/2103.14030 | |
Code/weights from https://github.com/microsoft/Swin-Transformer, original copyright/license info below | |
""" | |
# -------------------------------------------------------- | |
# Swin Transformer | |
# Copyright (c) 2021 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# Written by Ze Liu | |
# -------------------------------------------------------- | |
import logging | |
import math | |
from copy import deepcopy | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint as checkpoint | |
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
from .helpers import build_model_with_cfg, overlay_external_default_cfg | |
from .layers import PatchEmbed, Mlp, DropPath, to_2tuple, trunc_normal_ | |
from .registry import register_model | |
from .vision_transformer import checkpoint_filter_fn, _init_vit_weights | |
_logger = logging.getLogger(__name__) | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, | |
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, | |
'first_conv': 'patch_embed.proj', 'classifier': 'head', | |
**kwargs | |
} | |
default_cfgs = { | |
# patch models (my experiments) | |
'swin_base_patch4_window12_384': _cfg( | |
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22kto1k.pth', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'swin_base_patch4_window7_224': _cfg( | |
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22kto1k.pth', | |
), | |
'swin_large_patch4_window12_384': _cfg( | |
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22kto1k.pth', | |
input_size=(3, 384, 384), crop_pct=1.0), | |
'swin_large_patch4_window7_224': _cfg( | |
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22kto1k.pth', | |
), | |
'swin_small_patch4_window7_224': _cfg( | |
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth', | |
), | |
'swin_tiny_patch4_window7_224': _cfg( | |
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth', | |
), | |
'swin_base_patch4_window12_384_in22k': _cfg( | |
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth', | |
input_size=(3, 384, 384), crop_pct=1.0, num_classes=21841), | |
'swin_base_patch4_window7_224_in22k': _cfg( | |
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth', | |
num_classes=21841), | |
'swin_large_patch4_window12_384_in22k': _cfg( | |
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth', | |
input_size=(3, 384, 384), crop_pct=1.0, num_classes=21841), | |
'swin_large_patch4_window7_224_in22k': _cfg( | |
url='https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22k.pth', | |
num_classes=21841), | |
} | |
def window_partition(x, window_size: int): | |
""" | |
Args: | |
x: (B, H, W, C) | |
window_size (int): window size | |
Returns: | |
windows: (num_windows*B, window_size, window_size, C) | |
""" | |
B, H, W, C = x.shape | |
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) | |
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | |
return windows | |
def window_reverse(windows, window_size: int, H: int, W: int): | |
""" | |
Args: | |
windows: (num_windows*B, window_size, window_size, C) | |
window_size (int): Window size | |
H (int): Height of image | |
W (int): Width of image | |
Returns: | |
x: (B, H, W, C) | |
""" | |
B = int(windows.shape[0] / (H * W / window_size / window_size)) | |
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | |
return x | |
class WindowAttention(nn.Module): | |
r""" Window based multi-head self attention (W-MSA) module with relative position bias. | |
It supports both of shifted and non-shifted window. | |
Args: | |
dim (int): Number of input channels. | |
window_size (tuple[int]): The height and width of the window. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
""" | |
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.dim = dim | |
self.window_size = window_size # Wh, Ww | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim ** -0.5 | |
# define a parameter table of relative position bias | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH | |
# get pair-wise relative position index for each token inside the window | |
coords_h = torch.arange(self.window_size[0]) | |
coords_w = torch.arange(self.window_size[1]) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += self.window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 | |
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
self.register_buffer("relative_position_index", relative_position_index) | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
trunc_normal_(self.relative_position_bias_table, std=.02) | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, x, mask: Optional[torch.Tensor] = None): | |
""" | |
Args: | |
x: input features with shape of (num_windows*B, N, C) | |
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None | |
""" | |
B_, N, C = x.shape | |
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
q = q * self.scale | |
attn = (q @ k.transpose(-2, -1)) | |
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( | |
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH | |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
attn = attn + relative_position_bias.unsqueeze(0) | |
if mask is not None: | |
nW = mask.shape[0] | |
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) | |
attn = attn.view(-1, self.num_heads, N, N) | |
attn = self.softmax(attn) | |
else: | |
attn = self.softmax(attn) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class SwinTransformerBlock(nn.Module): | |
r""" Swin Transformer Block. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resulotion. | |
num_heads (int): Number of attention heads. | |
window_size (int): Window size. | |
shift_size (int): Shift size for SW-MSA. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
""" | |
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, | |
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., | |
act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.num_heads = num_heads | |
self.window_size = window_size | |
self.shift_size = shift_size | |
self.mlp_ratio = mlp_ratio | |
if min(self.input_resolution) <= self.window_size: | |
# if window size is larger than input resolution, we don't partition windows | |
self.shift_size = 0 | |
self.window_size = min(self.input_resolution) | |
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" | |
self.norm1 = norm_layer(dim) | |
self.attn = WindowAttention( | |
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, | |
attn_drop=attn_drop, proj_drop=drop) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
if self.shift_size > 0: | |
# calculate attention mask for SW-MSA | |
H, W = self.input_resolution | |
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 | |
h_slices = (slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None)) | |
w_slices = (slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None)) | |
cnt = 0 | |
for h in h_slices: | |
for w in w_slices: | |
img_mask[:, h, w, :] = cnt | |
cnt += 1 | |
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 | |
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) | |
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | |
else: | |
attn_mask = None | |
self.register_buffer("attn_mask", attn_mask) | |
def forward(self, x): | |
H, W = self.input_resolution | |
B, L, C = x.shape | |
assert L == H * W, "input feature has wrong size" | |
shortcut = x | |
x = self.norm1(x) | |
x = x.view(B, H, W, C) | |
# cyclic shift | |
if self.shift_size > 0: | |
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) | |
else: | |
shifted_x = x | |
# partition windows | |
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C | |
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C | |
# W-MSA/SW-MSA | |
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C | |
# merge windows | |
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) | |
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C | |
# reverse cyclic shift | |
if self.shift_size > 0: | |
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) | |
else: | |
x = shifted_x | |
x = x.view(B, H * W, C) | |
# FFN | |
x = shortcut + self.drop_path(x) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class PatchMerging(nn.Module): | |
r""" Patch Merging Layer. | |
Args: | |
input_resolution (tuple[int]): Resolution of input feature. | |
dim (int): Number of input channels. | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
""" | |
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.input_resolution = input_resolution | |
self.dim = dim | |
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) | |
self.norm = norm_layer(4 * dim) | |
def forward(self, x): | |
""" | |
x: B, H*W, C | |
""" | |
H, W = self.input_resolution | |
B, L, C = x.shape | |
assert L == H * W, "input feature has wrong size" | |
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." | |
x = x.view(B, H, W, C) | |
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C | |
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C | |
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C | |
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C | |
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C | |
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C | |
x = self.norm(x) | |
x = self.reduction(x) | |
return x | |
def extra_repr(self) -> str: | |
return f"input_resolution={self.input_resolution}, dim={self.dim}" | |
def flops(self): | |
H, W = self.input_resolution | |
flops = H * W * self.dim | |
flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim | |
return flops | |
class BasicLayer(nn.Module): | |
""" A basic Swin Transformer layer for one stage. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resolution. | |
depth (int): Number of blocks. | |
num_heads (int): Number of attention heads. | |
window_size (int): Local window size. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | |
""" | |
def __init__(self, dim, input_resolution, depth, num_heads, window_size, | |
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., | |
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.depth = depth | |
self.use_checkpoint = use_checkpoint | |
# build blocks | |
self.blocks = nn.ModuleList([ | |
SwinTransformerBlock( | |
dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, | |
shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, drop=drop, attn_drop=attn_drop, | |
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer) | |
for i in range(depth)]) | |
# patch merging layer | |
if downsample is not None: | |
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) | |
else: | |
self.downsample = None | |
def forward(self, x): | |
for blk in self.blocks: | |
if not torch.jit.is_scripting() and self.use_checkpoint: | |
x = checkpoint.checkpoint(blk, x) | |
else: | |
x = blk(x) | |
if self.downsample is not None: | |
x = self.downsample(x) | |
return x | |
def extra_repr(self) -> str: | |
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" | |
class SwinTransformer(nn.Module): | |
r""" Swin Transformer | |
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - | |
https://arxiv.org/pdf/2103.14030 | |
Args: | |
img_size (int | tuple(int)): Input image size. Default 224 | |
patch_size (int | tuple(int)): Patch size. Default: 4 | |
in_chans (int): Number of input image channels. Default: 3 | |
num_classes (int): Number of classes for classification head. Default: 1000 | |
embed_dim (int): Patch embedding dimension. Default: 96 | |
depths (tuple(int)): Depth of each Swin Transformer layer. | |
num_heads (tuple(int)): Number of attention heads in different layers. | |
window_size (int): Window size. Default: 7 | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True | |
drop_rate (float): Dropout rate. Default: 0 | |
attn_drop_rate (float): Attention dropout rate. Default: 0 | |
drop_path_rate (float): Stochastic depth rate. Default: 0.1 | |
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. | |
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False | |
patch_norm (bool): If True, add normalization after patch embedding. Default: True | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False | |
""" | |
def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, | |
embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24), | |
window_size=7, mlp_ratio=4., qkv_bias=True, | |
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, | |
norm_layer=nn.LayerNorm, ape=False, patch_norm=True, | |
use_checkpoint=False, weight_init='', **kwargs): | |
super().__init__() | |
self.num_classes = num_classes | |
self.num_layers = len(depths) | |
self.embed_dim = embed_dim | |
self.ape = ape | |
self.patch_norm = patch_norm | |
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) | |
self.mlp_ratio = mlp_ratio | |
# split image into non-overlapping patches | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, | |
norm_layer=norm_layer if self.patch_norm else None) | |
num_patches = self.patch_embed.num_patches | |
self.patch_grid = self.patch_embed.grid_size | |
# absolute position embedding | |
if self.ape: | |
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) | |
trunc_normal_(self.absolute_pos_embed, std=.02) | |
else: | |
self.absolute_pos_embed = None | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
# stochastic depth | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule | |
# build layers | |
layers = [] | |
for i_layer in range(self.num_layers): | |
layers += [BasicLayer( | |
dim=int(embed_dim * 2 ** i_layer), | |
input_resolution=(self.patch_grid[0] // (2 ** i_layer), self.patch_grid[1] // (2 ** i_layer)), | |
depth=depths[i_layer], | |
num_heads=num_heads[i_layer], | |
window_size=window_size, | |
mlp_ratio=self.mlp_ratio, | |
qkv_bias=qkv_bias, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], | |
norm_layer=norm_layer, | |
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, | |
use_checkpoint=use_checkpoint) | |
] | |
self.layers = nn.Sequential(*layers) | |
self.norm = norm_layer(self.num_features) | |
self.avgpool = nn.AdaptiveAvgPool1d(1) | |
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
assert weight_init in ('jax', 'jax_nlhb', 'nlhb', '') | |
head_bias = -math.log(self.num_classes) if 'nlhb' in weight_init else 0. | |
if weight_init.startswith('jax'): | |
for n, m in self.named_modules(): | |
_init_vit_weights(m, n, head_bias=head_bias, jax_impl=True) | |
else: | |
self.apply(_init_vit_weights) | |
def no_weight_decay(self): | |
return {'absolute_pos_embed'} | |
def no_weight_decay_keywords(self): | |
return {'relative_position_bias_table'} | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=''): | |
self.num_classes = num_classes | |
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
def forward_features(self, x): | |
x = self.patch_embed(x) | |
if self.absolute_pos_embed is not None: | |
x = x + self.absolute_pos_embed | |
x = self.pos_drop(x) | |
x = self.layers(x) | |
x = self.norm(x) # B L C | |
x = self.avgpool(x.transpose(1, 2)) # B C 1 | |
x = torch.flatten(x, 1) | |
return x | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.head(x) | |
return x | |
def _create_swin_transformer(variant, pretrained=False, default_cfg=None, **kwargs): | |
if default_cfg is None: | |
default_cfg = deepcopy(default_cfgs[variant]) | |
overlay_external_default_cfg(default_cfg, kwargs) | |
default_num_classes = default_cfg['num_classes'] | |
default_img_size = default_cfg['input_size'][-2:] | |
num_classes = kwargs.pop('num_classes', default_num_classes) | |
img_size = kwargs.pop('img_size', default_img_size) | |
if kwargs.get('features_only', None): | |
raise RuntimeError('features_only not implemented for Vision Transformer models.') | |
model = build_model_with_cfg( | |
SwinTransformer, variant, pretrained, | |
default_cfg=default_cfg, | |
img_size=img_size, | |
num_classes=num_classes, | |
pretrained_filter_fn=checkpoint_filter_fn, | |
**kwargs) | |
return model | |
def swin_base_patch4_window12_384(pretrained=False, **kwargs): | |
""" Swin-B @ 384x384, pretrained ImageNet-22k, fine tune 1k | |
""" | |
model_kwargs = dict( | |
patch_size=4, window_size=12, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), **kwargs) | |
return _create_swin_transformer('swin_base_patch4_window12_384', pretrained=pretrained, **model_kwargs) | |
def swin_base_patch4_window7_224(pretrained=False, **kwargs): | |
""" Swin-B @ 224x224, pretrained ImageNet-22k, fine tune 1k | |
""" | |
model_kwargs = dict( | |
patch_size=4, window_size=7, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), **kwargs) | |
return _create_swin_transformer('swin_base_patch4_window7_224', pretrained=pretrained, **model_kwargs) | |
def swin_large_patch4_window12_384(pretrained=False, **kwargs): | |
""" Swin-L @ 384x384, pretrained ImageNet-22k, fine tune 1k | |
""" | |
model_kwargs = dict( | |
patch_size=4, window_size=12, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), **kwargs) | |
return _create_swin_transformer('swin_large_patch4_window12_384', pretrained=pretrained, **model_kwargs) | |
def swin_large_patch4_window7_224(pretrained=False, **kwargs): | |
""" Swin-L @ 224x224, pretrained ImageNet-22k, fine tune 1k | |
""" | |
model_kwargs = dict( | |
patch_size=4, window_size=7, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), **kwargs) | |
return _create_swin_transformer('swin_large_patch4_window7_224', pretrained=pretrained, **model_kwargs) | |
def swin_small_patch4_window7_224(pretrained=False, **kwargs): | |
""" Swin-S @ 224x224, trained ImageNet-1k | |
""" | |
model_kwargs = dict( | |
patch_size=4, window_size=7, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24), **kwargs) | |
return _create_swin_transformer('swin_small_patch4_window7_224', pretrained=pretrained, **model_kwargs) | |
def swin_tiny_patch4_window7_224(pretrained=False, **kwargs): | |
""" Swin-T @ 224x224, trained ImageNet-1k | |
""" | |
model_kwargs = dict( | |
patch_size=4, window_size=7, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24), **kwargs) | |
return _create_swin_transformer('swin_tiny_patch4_window7_224', pretrained=pretrained, **model_kwargs) | |
def swin_base_patch4_window12_384_in22k(pretrained=False, **kwargs): | |
""" Swin-B @ 384x384, trained ImageNet-22k | |
""" | |
model_kwargs = dict( | |
patch_size=4, window_size=12, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), **kwargs) | |
return _create_swin_transformer('swin_base_patch4_window12_384_in22k', pretrained=pretrained, **model_kwargs) | |
def swin_base_patch4_window7_224_in22k(pretrained=False, **kwargs): | |
""" Swin-B @ 224x224, trained ImageNet-22k | |
""" | |
model_kwargs = dict( | |
patch_size=4, window_size=7, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), **kwargs) | |
return _create_swin_transformer('swin_base_patch4_window7_224_in22k', pretrained=pretrained, **model_kwargs) | |
def swin_large_patch4_window12_384_in22k(pretrained=False, **kwargs): | |
""" Swin-L @ 384x384, trained ImageNet-22k | |
""" | |
model_kwargs = dict( | |
patch_size=4, window_size=12, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), **kwargs) | |
return _create_swin_transformer('swin_large_patch4_window12_384_in22k', pretrained=pretrained, **model_kwargs) | |
def swin_large_patch4_window7_224_in22k(pretrained=False, **kwargs): | |
""" Swin-L @ 224x224, trained ImageNet-22k | |
""" | |
model_kwargs = dict( | |
patch_size=4, window_size=7, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), **kwargs) | |
return _create_swin_transformer('swin_large_patch4_window7_224_in22k', pretrained=pretrained, **model_kwargs) |