File size: 10,344 Bytes
a6dac9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""VGG

Adapted from https://github.com/pytorch/vision 'vgg.py' (BSD-3-Clause) with a few changes for
timm functionality.

Copyright 2021 Ross Wightman
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Union, List, Dict, Any, cast

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg
from .layers import ClassifierHead, ConvBnAct
from .registry import register_model

__all__ = [
    'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn',
    'vgg19_bn', 'vgg19',
]


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (1, 1),
        'crop_pct': 0.875, 'interpolation': 'bilinear',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'features.0', 'classifier': 'head.fc',
        **kwargs
    }


default_cfgs = {
    'vgg11': _cfg(url='https://download.pytorch.org/models/vgg11-bbd30ac9.pth'),
    'vgg13': _cfg(url='https://download.pytorch.org/models/vgg13-c768596a.pth'),
    'vgg16': _cfg(url='https://download.pytorch.org/models/vgg16-397923af.pth'),
    'vgg19': _cfg(url='https://download.pytorch.org/models/vgg19-dcbb9e9d.pth'),
    'vgg11_bn': _cfg(url='https://download.pytorch.org/models/vgg11_bn-6002323d.pth'),
    'vgg13_bn': _cfg(url='https://download.pytorch.org/models/vgg13_bn-abd245e5.pth'),
    'vgg16_bn': _cfg(url='https://download.pytorch.org/models/vgg16_bn-6c64b313.pth'),
    'vgg19_bn': _cfg(url='https://download.pytorch.org/models/vgg19_bn-c79401a0.pth'),
}


cfgs: Dict[str, List[Union[str, int]]] = {
    'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
    'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}


class ConvMlp(nn.Module):

    def __init__(self, in_features=512, out_features=4096, kernel_size=7, mlp_ratio=1.0,
                 drop_rate: float = 0.2, act_layer: nn.Module = None, conv_layer: nn.Module = None):
        super(ConvMlp, self).__init__()
        self.input_kernel_size = kernel_size
        mid_features = int(out_features * mlp_ratio)
        self.fc1 = conv_layer(in_features, mid_features, kernel_size, bias=True)
        self.act1 = act_layer(True)
        self.drop = nn.Dropout(drop_rate)
        self.fc2 = conv_layer(mid_features, out_features, 1, bias=True)
        self.act2 = act_layer(True)

    def forward(self, x):
        if x.shape[-2] < self.input_kernel_size or x.shape[-1] < self.input_kernel_size:
            # keep the input size >= 7x7
            output_size = (max(self.input_kernel_size, x.shape[-2]), max(self.input_kernel_size, x.shape[-1]))
            x = F.adaptive_avg_pool2d(x, output_size)
        x = self.fc1(x)
        x = self.act1(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.act2(x)
        return x


class VGG(nn.Module):

    def __init__(
        self,
        cfg: List[Any],
        num_classes: int = 1000,
        in_chans: int = 3,
        output_stride: int = 32,
        mlp_ratio: float = 1.0,
        act_layer: nn.Module = nn.ReLU,
        conv_layer: nn.Module = nn.Conv2d,
        norm_layer: nn.Module = None,
        global_pool: str = 'avg',
        drop_rate: float = 0.,
    ) -> None:
        super(VGG, self).__init__()
        assert output_stride == 32
        self.num_classes = num_classes
        self.num_features = 4096
        self.drop_rate = drop_rate
        self.feature_info = []
        prev_chs = in_chans
        net_stride = 1
        pool_layer = nn.MaxPool2d
        layers: List[nn.Module] = []
        for v in cfg:
            last_idx = len(layers) - 1
            if v == 'M':
                self.feature_info.append(dict(num_chs=prev_chs, reduction=net_stride, module=f'features.{last_idx}'))
                layers += [pool_layer(kernel_size=2, stride=2)]
                net_stride *= 2
            else:
                v = cast(int, v)
                conv2d = conv_layer(prev_chs, v, kernel_size=3, padding=1)
                if norm_layer is not None:
                    layers += [conv2d, norm_layer(v), act_layer(inplace=True)]
                else:
                    layers += [conv2d, act_layer(inplace=True)]
                prev_chs = v
        self.features = nn.Sequential(*layers)
        self.feature_info.append(dict(num_chs=prev_chs, reduction=net_stride, module=f'features.{len(layers) - 1}'))
        self.pre_logits = ConvMlp(
            prev_chs, self.num_features, 7, mlp_ratio=mlp_ratio,
            drop_rate=drop_rate, act_layer=act_layer, conv_layer=conv_layer)
        self.head = ClassifierHead(
            self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate)

        self._initialize_weights()

    def get_classifier(self):
        return self.head.fc

    def reset_classifier(self, num_classes, global_pool='avg'):
        self.num_classes = num_classes
        self.head = ClassifierHead(
            self.num_features, self.num_classes, pool_type=global_pool, drop_rate=self.drop_rate)

    def forward_features(self, x: torch.Tensor) -> torch.Tensor:
        x = self.features(x)
        x = self.pre_logits(x)
        return x

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.forward_features(x)
        x = self.head(x)
        return x

    def _initialize_weights(self) -> None:
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)


def _filter_fn(state_dict):
    """ convert patch embedding weight from manual patchify + linear proj to conv"""
    out_dict = {}
    for k, v in state_dict.items():
        k_r = k
        k_r = k_r.replace('classifier.0', 'pre_logits.fc1')
        k_r = k_r.replace('classifier.3', 'pre_logits.fc2')
        k_r = k_r.replace('classifier.6', 'head.fc')
        if 'classifier.0.weight' in k:
            v = v.reshape(-1, 512, 7, 7)
        if 'classifier.3.weight' in k:
            v = v.reshape(-1, 4096, 1, 1)
        out_dict[k_r] = v
    return out_dict


def _create_vgg(variant: str, pretrained: bool, **kwargs: Any) -> VGG:
    cfg = variant.split('_')[0]
    # NOTE: VGG is one of the only models with stride==1 features, so indices are offset from other models
    out_indices = kwargs.get('out_indices', (0, 1, 2, 3, 4, 5))
    model = build_model_with_cfg(
        VGG, variant, pretrained,
        default_cfg=default_cfgs[variant],
        model_cfg=cfgs[cfg],
        feature_cfg=dict(flatten_sequential=True, out_indices=out_indices),
        pretrained_filter_fn=_filter_fn,
        **kwargs)
    return model


@register_model
def vgg11(pretrained: bool = False, **kwargs: Any) -> VGG:
    r"""VGG 11-layer model (configuration "A") from
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
    """
    model_args = dict(**kwargs)
    return _create_vgg('vgg11', pretrained=pretrained, **model_args)


@register_model
def vgg11_bn(pretrained: bool = False, **kwargs: Any) -> VGG:
    r"""VGG 11-layer model (configuration "A") with batch normalization
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
    """
    model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs)
    return _create_vgg('vgg11_bn', pretrained=pretrained, **model_args)


@register_model
def vgg13(pretrained: bool = False, **kwargs: Any) -> VGG:
    r"""VGG 13-layer model (configuration "B")
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
    """
    model_args = dict(**kwargs)
    return _create_vgg('vgg13', pretrained=pretrained, **model_args)


@register_model
def vgg13_bn(pretrained: bool = False, **kwargs: Any) -> VGG:
    r"""VGG 13-layer model (configuration "B") with batch normalization
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
    """
    model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs)
    return _create_vgg('vgg13_bn', pretrained=pretrained, **model_args)


@register_model
def vgg16(pretrained: bool = False, **kwargs: Any) -> VGG:
    r"""VGG 16-layer model (configuration "D")
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
    """
    model_args = dict(**kwargs)
    return _create_vgg('vgg16', pretrained=pretrained, **model_args)


@register_model
def vgg16_bn(pretrained: bool = False, **kwargs: Any) -> VGG:
    r"""VGG 16-layer model (configuration "D") with batch normalization
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
    """
    model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs)
    return _create_vgg('vgg16_bn', pretrained=pretrained, **model_args)


@register_model
def vgg19(pretrained: bool = False, **kwargs: Any) -> VGG:
    r"""VGG 19-layer model (configuration "E")
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
    """
    model_args = dict(**kwargs)
    return _create_vgg('vgg19', pretrained=pretrained, **model_args)


@register_model
def vgg19_bn(pretrained: bool = False, **kwargs: Any) -> VGG:
    r"""VGG 19-layer model (configuration 'E') with batch normalization
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`._
    """
    model_args = dict(norm_layer=nn.BatchNorm2d, **kwargs)
    return _create_vgg('vgg19_bn', pretrained=pretrained, **model_args)