File size: 27,479 Bytes
a6dac9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
"""Pre-Activation ResNet v2 with GroupNorm and Weight Standardization.

A PyTorch implementation of ResNetV2 adapted from the Google Big-Transfoer (BiT) source code
at https://github.com/google-research/big_transfer to match timm interfaces. The BiT weights have
been included here as pretrained models from their original .NPZ checkpoints.

Additionally, supports non pre-activation bottleneck for use as a backbone for Vision Transfomers (ViT) and
extra padding support to allow porting of official Hybrid ResNet pretrained weights from
https://github.com/google-research/vision_transformer

Thanks to the Google team for the above two repositories and associated papers:
* Big Transfer (BiT): General Visual Representation Learning - https://arxiv.org/abs/1912.11370
* An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale - https://arxiv.org/abs/2010.11929
* Knowledge distillation: A good teacher is patient and consistent - https://arxiv.org/abs/2106.05237

Original copyright of Google code below, modifications by Ross Wightman, Copyright 2020.
"""
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import OrderedDict  # pylint: disable=g-importing-member

import torch
import torch.nn as nn
from functools import partial

from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from .helpers import build_model_with_cfg, named_apply, adapt_input_conv
from .registry import register_model
from .layers import GroupNormAct, BatchNormAct2d, EvoNormBatch2d, EvoNormSample2d,\
    ClassifierHead, DropPath, AvgPool2dSame, create_pool2d, StdConv2d, create_conv2d


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
        'crop_pct': 0.875, 'interpolation': 'bilinear',
        'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
        'first_conv': 'stem.conv', 'classifier': 'head.fc',
        **kwargs
    }


default_cfgs = {
    # pretrained on imagenet21k, finetuned on imagenet1k
    'resnetv2_50x1_bitm': _cfg(
        url='https://storage.googleapis.com/bit_models/BiT-M-R50x1-ILSVRC2012.npz',
        input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0),
    'resnetv2_50x3_bitm': _cfg(
        url='https://storage.googleapis.com/bit_models/BiT-M-R50x3-ILSVRC2012.npz',
        input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0),
    'resnetv2_101x1_bitm': _cfg(
        url='https://storage.googleapis.com/bit_models/BiT-M-R101x1-ILSVRC2012.npz',
        input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0),
    'resnetv2_101x3_bitm': _cfg(
        url='https://storage.googleapis.com/bit_models/BiT-M-R101x3-ILSVRC2012.npz',
        input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0),
    'resnetv2_152x2_bitm': _cfg(
        url='https://storage.googleapis.com/bit_models/BiT-M-R152x2-ILSVRC2012.npz',
        input_size=(3, 448, 448), pool_size=(14, 14), crop_pct=1.0),
    'resnetv2_152x4_bitm': _cfg(
        url='https://storage.googleapis.com/bit_models/BiT-M-R152x4-ILSVRC2012.npz',
        input_size=(3, 480, 480), pool_size=(15, 15), crop_pct=1.0),  # only one at 480x480?

    # trained on imagenet-21k
    'resnetv2_50x1_bitm_in21k': _cfg(
        url='https://storage.googleapis.com/bit_models/BiT-M-R50x1.npz',
        num_classes=21843),
    'resnetv2_50x3_bitm_in21k': _cfg(
        url='https://storage.googleapis.com/bit_models/BiT-M-R50x3.npz',
        num_classes=21843),
    'resnetv2_101x1_bitm_in21k': _cfg(
        url='https://storage.googleapis.com/bit_models/BiT-M-R101x1.npz',
        num_classes=21843),
    'resnetv2_101x3_bitm_in21k': _cfg(
        url='https://storage.googleapis.com/bit_models/BiT-M-R101x3.npz',
        num_classes=21843),
    'resnetv2_152x2_bitm_in21k': _cfg(
        url='https://storage.googleapis.com/bit_models/BiT-M-R152x2.npz',
        num_classes=21843),
    'resnetv2_152x4_bitm_in21k': _cfg(
        url='https://storage.googleapis.com/bit_models/BiT-M-R152x4.npz',
        num_classes=21843),

    'resnetv2_50x1_bit_distilled': _cfg(
        url='https://storage.googleapis.com/bit_models/distill/R50x1_224.npz',
        interpolation='bicubic'),
    'resnetv2_152x2_bit_teacher': _cfg(
        url='https://storage.googleapis.com/bit_models/distill/R152x2_T_224.npz',
        interpolation='bicubic'),
    'resnetv2_152x2_bit_teacher_384': _cfg(
        url='https://storage.googleapis.com/bit_models/distill/R152x2_T_384.npz',
        input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, interpolation='bicubic'),

    'resnetv2_50': _cfg(
        interpolation='bicubic'),
    'resnetv2_50d': _cfg(
        interpolation='bicubic', first_conv='stem.conv1'),
    'resnetv2_50t': _cfg(
        interpolation='bicubic', first_conv='stem.conv1'),
    'resnetv2_101': _cfg(
        interpolation='bicubic'),
    'resnetv2_101d': _cfg(
        interpolation='bicubic', first_conv='stem.conv1'),
    'resnetv2_152': _cfg(
        interpolation='bicubic'),
    'resnetv2_152d': _cfg(
        interpolation='bicubic', first_conv='stem.conv1'),
}


def make_div(v, divisor=8):
    min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


class PreActBottleneck(nn.Module):
    """Pre-activation (v2) bottleneck block.

    Follows the implementation of "Identity Mappings in Deep Residual Networks":
    https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua

    Except it puts the stride on 3x3 conv when available.
    """

    def __init__(
            self, in_chs, out_chs=None, bottle_ratio=0.25, stride=1, dilation=1, first_dilation=None, groups=1,
            act_layer=None, conv_layer=None, norm_layer=None, proj_layer=None, drop_path_rate=0.):
        super().__init__()
        first_dilation = first_dilation or dilation
        conv_layer = conv_layer or StdConv2d
        norm_layer = norm_layer or partial(GroupNormAct, num_groups=32)
        out_chs = out_chs or in_chs
        mid_chs = make_div(out_chs * bottle_ratio)

        if proj_layer is not None:
            self.downsample = proj_layer(
                in_chs, out_chs, stride=stride, dilation=dilation, first_dilation=first_dilation, preact=True,
                conv_layer=conv_layer, norm_layer=norm_layer)
        else:
            self.downsample = None

        self.norm1 = norm_layer(in_chs)
        self.conv1 = conv_layer(in_chs, mid_chs, 1)
        self.norm2 = norm_layer(mid_chs)
        self.conv2 = conv_layer(mid_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups)
        self.norm3 = norm_layer(mid_chs)
        self.conv3 = conv_layer(mid_chs, out_chs, 1)
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()

    def zero_init_last(self):
        nn.init.zeros_(self.conv3.weight)

    def forward(self, x):
        x_preact = self.norm1(x)

        # shortcut branch
        shortcut = x
        if self.downsample is not None:
            shortcut = self.downsample(x_preact)

        # residual branch
        x = self.conv1(x_preact)
        x = self.conv2(self.norm2(x))
        x = self.conv3(self.norm3(x))
        x = self.drop_path(x)
        return x + shortcut


class Bottleneck(nn.Module):
    """Non Pre-activation bottleneck block, equiv to V1.5/V1b Bottleneck. Used for ViT.
    """
    def __init__(
            self, in_chs, out_chs=None, bottle_ratio=0.25, stride=1, dilation=1, first_dilation=None, groups=1,
            act_layer=None, conv_layer=None, norm_layer=None, proj_layer=None, drop_path_rate=0.):
        super().__init__()
        first_dilation = first_dilation or dilation
        act_layer = act_layer or nn.ReLU
        conv_layer = conv_layer or StdConv2d
        norm_layer = norm_layer or partial(GroupNormAct, num_groups=32)
        out_chs = out_chs or in_chs
        mid_chs = make_div(out_chs * bottle_ratio)

        if proj_layer is not None:
            self.downsample = proj_layer(
                in_chs, out_chs, stride=stride, dilation=dilation, preact=False,
                conv_layer=conv_layer, norm_layer=norm_layer)
        else:
            self.downsample = None

        self.conv1 = conv_layer(in_chs, mid_chs, 1)
        self.norm1 = norm_layer(mid_chs)
        self.conv2 = conv_layer(mid_chs, mid_chs, 3, stride=stride, dilation=first_dilation, groups=groups)
        self.norm2 = norm_layer(mid_chs)
        self.conv3 = conv_layer(mid_chs, out_chs, 1)
        self.norm3 = norm_layer(out_chs, apply_act=False)
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
        self.act3 = act_layer(inplace=True)

    def zero_init_last(self):
        nn.init.zeros_(self.norm3.weight)

    def forward(self, x):
        # shortcut branch
        shortcut = x
        if self.downsample is not None:
            shortcut = self.downsample(x)

        # residual
        x = self.conv1(x)
        x = self.norm1(x)
        x = self.conv2(x)
        x = self.norm2(x)
        x = self.conv3(x)
        x = self.norm3(x)
        x = self.drop_path(x)
        x = self.act3(x + shortcut)
        return x


class DownsampleConv(nn.Module):
    def __init__(
            self, in_chs, out_chs, stride=1, dilation=1, first_dilation=None, preact=True,
            conv_layer=None, norm_layer=None):
        super(DownsampleConv, self).__init__()
        self.conv = conv_layer(in_chs, out_chs, 1, stride=stride)
        self.norm = nn.Identity() if preact else norm_layer(out_chs, apply_act=False)

    def forward(self, x):
        return self.norm(self.conv(x))


class DownsampleAvg(nn.Module):
    def __init__(
            self, in_chs, out_chs, stride=1, dilation=1, first_dilation=None,
            preact=True, conv_layer=None, norm_layer=None):
        """ AvgPool Downsampling as in 'D' ResNet variants. This is not in RegNet space but I might experiment."""
        super(DownsampleAvg, self).__init__()
        avg_stride = stride if dilation == 1 else 1
        if stride > 1 or dilation > 1:
            avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d
            self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False)
        else:
            self.pool = nn.Identity()
        self.conv = conv_layer(in_chs, out_chs, 1, stride=1)
        self.norm = nn.Identity() if preact else norm_layer(out_chs, apply_act=False)

    def forward(self, x):
        return self.norm(self.conv(self.pool(x)))


class ResNetStage(nn.Module):
    """ResNet Stage."""
    def __init__(self, in_chs, out_chs, stride, dilation, depth, bottle_ratio=0.25, groups=1,
                 avg_down=False, block_dpr=None, block_fn=PreActBottleneck,
                 act_layer=None, conv_layer=None, norm_layer=None, **block_kwargs):
        super(ResNetStage, self).__init__()
        first_dilation = 1 if dilation in (1, 2) else 2
        layer_kwargs = dict(act_layer=act_layer, conv_layer=conv_layer, norm_layer=norm_layer)
        proj_layer = DownsampleAvg if avg_down else DownsampleConv
        prev_chs = in_chs
        self.blocks = nn.Sequential()
        for block_idx in range(depth):
            drop_path_rate = block_dpr[block_idx] if block_dpr else 0.
            stride = stride if block_idx == 0 else 1
            self.blocks.add_module(str(block_idx), block_fn(
                prev_chs, out_chs, stride=stride, dilation=dilation, bottle_ratio=bottle_ratio, groups=groups,
                first_dilation=first_dilation, proj_layer=proj_layer, drop_path_rate=drop_path_rate,
                **layer_kwargs, **block_kwargs))
            prev_chs = out_chs
            first_dilation = dilation
            proj_layer = None

    def forward(self, x):
        x = self.blocks(x)
        return x


def is_stem_deep(stem_type):
    return any([s in stem_type for s in ('deep', 'tiered')])


def create_resnetv2_stem(
        in_chs, out_chs=64, stem_type='', preact=True,
        conv_layer=StdConv2d, norm_layer=partial(GroupNormAct, num_groups=32)):
    stem = OrderedDict()
    assert stem_type in ('', 'fixed', 'same', 'deep', 'deep_fixed', 'deep_same', 'tiered')

    # NOTE conv padding mode can be changed by overriding the conv_layer def
    if is_stem_deep(stem_type):
        # A 3 deep 3x3  conv stack as in ResNet V1D models
        if 'tiered' in stem_type:
            stem_chs = (3 * out_chs // 8, out_chs // 2)  # 'T' resnets in resnet.py
        else:
            stem_chs = (out_chs // 2, out_chs // 2)  # 'D' ResNets
        stem['conv1'] = conv_layer(in_chs, stem_chs[0], kernel_size=3, stride=2)
        stem['norm1'] = norm_layer(stem_chs[0])
        stem['conv2'] = conv_layer(stem_chs[0], stem_chs[1], kernel_size=3, stride=1)
        stem['norm2'] = norm_layer(stem_chs[1])
        stem['conv3'] = conv_layer(stem_chs[1], out_chs, kernel_size=3, stride=1)
        if not preact:
            stem['norm3'] = norm_layer(out_chs)
    else:
        # The usual 7x7 stem conv
        stem['conv'] = conv_layer(in_chs, out_chs, kernel_size=7, stride=2)
        if not preact:
            stem['norm'] = norm_layer(out_chs)

    if 'fixed' in stem_type:
        # 'fixed' SAME padding approximation that is used in BiT models
        stem['pad'] = nn.ConstantPad2d(1, 0.)
        stem['pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=0)
    elif 'same' in stem_type:
        # full, input size based 'SAME' padding, used in ViT Hybrid model
        stem['pool'] = create_pool2d('max', kernel_size=3, stride=2, padding='same')
    else:
        # the usual PyTorch symmetric padding
        stem['pool'] = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

    return nn.Sequential(stem)


class ResNetV2(nn.Module):
    """Implementation of Pre-activation (v2) ResNet mode.
    """

    def __init__(
            self, layers, channels=(256, 512, 1024, 2048),
            num_classes=1000, in_chans=3, global_pool='avg', output_stride=32,
            width_factor=1, stem_chs=64, stem_type='', avg_down=False, preact=True,
            act_layer=nn.ReLU, conv_layer=StdConv2d, norm_layer=partial(GroupNormAct, num_groups=32),
            drop_rate=0., drop_path_rate=0., zero_init_last=True):
        super().__init__()
        self.num_classes = num_classes
        self.drop_rate = drop_rate
        wf = width_factor

        self.feature_info = []
        stem_chs = make_div(stem_chs * wf)
        self.stem = create_resnetv2_stem(
            in_chans, stem_chs, stem_type, preact, conv_layer=conv_layer, norm_layer=norm_layer)
        stem_feat = ('stem.conv3' if is_stem_deep(stem_type) else 'stem.conv') if preact else 'stem.norm'
        self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=stem_feat))

        prev_chs = stem_chs
        curr_stride = 4
        dilation = 1
        block_dprs = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(layers)).split(layers)]
        block_fn = PreActBottleneck if preact else Bottleneck
        self.stages = nn.Sequential()
        for stage_idx, (d, c, bdpr) in enumerate(zip(layers, channels, block_dprs)):
            out_chs = make_div(c * wf)
            stride = 1 if stage_idx == 0 else 2
            if curr_stride >= output_stride:
                dilation *= stride
                stride = 1
            stage = ResNetStage(
                prev_chs, out_chs, stride=stride, dilation=dilation, depth=d, avg_down=avg_down,
                act_layer=act_layer, conv_layer=conv_layer, norm_layer=norm_layer, block_dpr=bdpr, block_fn=block_fn)
            prev_chs = out_chs
            curr_stride *= stride
            self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{stage_idx}')]
            self.stages.add_module(str(stage_idx), stage)

        self.num_features = prev_chs
        self.norm = norm_layer(self.num_features) if preact else nn.Identity()
        self.head = ClassifierHead(
            self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate, use_conv=True)

        self.init_weights(zero_init_last=zero_init_last)

    def init_weights(self, zero_init_last=True):
        named_apply(partial(_init_weights, zero_init_last=zero_init_last), self)

    @torch.jit.ignore()
    def load_pretrained(self, checkpoint_path, prefix='resnet/'):
        _load_weights(self, checkpoint_path, prefix)

    def get_classifier(self):
        return self.head.fc

    def reset_classifier(self, num_classes, global_pool='avg'):
        self.num_classes = num_classes
        self.head = ClassifierHead(
            self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate, use_conv=True)

    def forward_features(self, x):
        x = self.stem(x)
        x = self.stages(x)
        x = self.norm(x)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x


def _init_weights(module: nn.Module, name: str = '', zero_init_last=True):
    if isinstance(module, nn.Linear) or ('head.fc' in name and isinstance(module, nn.Conv2d)):
        nn.init.normal_(module.weight, mean=0.0, std=0.01)
        nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Conv2d):
        nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, (nn.BatchNorm2d, nn.LayerNorm, nn.GroupNorm)):
        nn.init.ones_(module.weight)
        nn.init.zeros_(module.bias)
    elif zero_init_last and hasattr(module, 'zero_init_last'):
        module.zero_init_last()


@torch.no_grad()
def _load_weights(model: nn.Module, checkpoint_path: str, prefix: str = 'resnet/'):
    import numpy as np

    def t2p(conv_weights):
        """Possibly convert HWIO to OIHW."""
        if conv_weights.ndim == 4:
            conv_weights = conv_weights.transpose([3, 2, 0, 1])
        return torch.from_numpy(conv_weights)

    weights = np.load(checkpoint_path)
    stem_conv_w = adapt_input_conv(
        model.stem.conv.weight.shape[1], t2p(weights[f'{prefix}root_block/standardized_conv2d/kernel']))
    model.stem.conv.weight.copy_(stem_conv_w)
    model.norm.weight.copy_(t2p(weights[f'{prefix}group_norm/gamma']))
    model.norm.bias.copy_(t2p(weights[f'{prefix}group_norm/beta']))
    if isinstance(getattr(model.head, 'fc', None), nn.Conv2d) and \
            model.head.fc.weight.shape[0] == weights[f'{prefix}head/conv2d/kernel'].shape[-1]:
        model.head.fc.weight.copy_(t2p(weights[f'{prefix}head/conv2d/kernel']))
        model.head.fc.bias.copy_(t2p(weights[f'{prefix}head/conv2d/bias']))
    for i, (sname, stage) in enumerate(model.stages.named_children()):
        for j, (bname, block) in enumerate(stage.blocks.named_children()):
            cname = 'standardized_conv2d'
            block_prefix = f'{prefix}block{i + 1}/unit{j + 1:02d}/'
            block.conv1.weight.copy_(t2p(weights[f'{block_prefix}a/{cname}/kernel']))
            block.conv2.weight.copy_(t2p(weights[f'{block_prefix}b/{cname}/kernel']))
            block.conv3.weight.copy_(t2p(weights[f'{block_prefix}c/{cname}/kernel']))
            block.norm1.weight.copy_(t2p(weights[f'{block_prefix}a/group_norm/gamma']))
            block.norm2.weight.copy_(t2p(weights[f'{block_prefix}b/group_norm/gamma']))
            block.norm3.weight.copy_(t2p(weights[f'{block_prefix}c/group_norm/gamma']))
            block.norm1.bias.copy_(t2p(weights[f'{block_prefix}a/group_norm/beta']))
            block.norm2.bias.copy_(t2p(weights[f'{block_prefix}b/group_norm/beta']))
            block.norm3.bias.copy_(t2p(weights[f'{block_prefix}c/group_norm/beta']))
            if block.downsample is not None:
                w = weights[f'{block_prefix}a/proj/{cname}/kernel']
                block.downsample.conv.weight.copy_(t2p(w))


def _create_resnetv2(variant, pretrained=False, **kwargs):
    feature_cfg = dict(flatten_sequential=True)
    return build_model_with_cfg(
        ResNetV2, variant, pretrained,
        default_cfg=default_cfgs[variant],
        feature_cfg=feature_cfg,
        pretrained_custom_load=True,
        **kwargs)


def _create_resnetv2_bit(variant, pretrained=False, **kwargs):
    return _create_resnetv2(
        variant, pretrained=pretrained, stem_type='fixed',  conv_layer=partial(StdConv2d, eps=1e-8), **kwargs)


@register_model
def resnetv2_50x1_bitm(pretrained=False, **kwargs):
    return _create_resnetv2_bit(
        'resnetv2_50x1_bitm', pretrained=pretrained, layers=[3, 4, 6, 3], width_factor=1, **kwargs)


@register_model
def resnetv2_50x3_bitm(pretrained=False, **kwargs):
    return _create_resnetv2_bit(
        'resnetv2_50x3_bitm', pretrained=pretrained, layers=[3, 4, 6, 3], width_factor=3, **kwargs)


@register_model
def resnetv2_101x1_bitm(pretrained=False, **kwargs):
    return _create_resnetv2_bit(
        'resnetv2_101x1_bitm', pretrained=pretrained, layers=[3, 4, 23, 3], width_factor=1, **kwargs)


@register_model
def resnetv2_101x3_bitm(pretrained=False, **kwargs):
    return _create_resnetv2_bit(
        'resnetv2_101x3_bitm', pretrained=pretrained, layers=[3, 4, 23, 3], width_factor=3, **kwargs)


@register_model
def resnetv2_152x2_bitm(pretrained=False, **kwargs):
    return _create_resnetv2_bit(
        'resnetv2_152x2_bitm', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=2, **kwargs)


@register_model
def resnetv2_152x4_bitm(pretrained=False, **kwargs):
    return _create_resnetv2_bit(
        'resnetv2_152x4_bitm', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=4, **kwargs)


@register_model
def resnetv2_50x1_bitm_in21k(pretrained=False, **kwargs):
    return _create_resnetv2_bit(
        'resnetv2_50x1_bitm_in21k', pretrained=pretrained, num_classes=kwargs.pop('num_classes', 21843),
        layers=[3, 4, 6, 3], width_factor=1, **kwargs)


@register_model
def resnetv2_50x3_bitm_in21k(pretrained=False, **kwargs):
    return _create_resnetv2_bit(
        'resnetv2_50x3_bitm_in21k', pretrained=pretrained, num_classes=kwargs.pop('num_classes', 21843),
        layers=[3, 4, 6, 3], width_factor=3, **kwargs)


@register_model
def resnetv2_101x1_bitm_in21k(pretrained=False, **kwargs):
    return _create_resnetv2(
        'resnetv2_101x1_bitm_in21k', pretrained=pretrained, num_classes=kwargs.pop('num_classes', 21843),
        layers=[3, 4, 23, 3], width_factor=1, **kwargs)


@register_model
def resnetv2_101x3_bitm_in21k(pretrained=False, **kwargs):
    return _create_resnetv2_bit(
        'resnetv2_101x3_bitm_in21k', pretrained=pretrained, num_classes=kwargs.pop('num_classes', 21843),
        layers=[3, 4, 23, 3], width_factor=3, **kwargs)


@register_model
def resnetv2_152x2_bitm_in21k(pretrained=False, **kwargs):
    return _create_resnetv2_bit(
        'resnetv2_152x2_bitm_in21k', pretrained=pretrained, num_classes=kwargs.pop('num_classes', 21843),
        layers=[3, 8, 36, 3], width_factor=2, **kwargs)


@register_model
def resnetv2_152x4_bitm_in21k(pretrained=False, **kwargs):
    return _create_resnetv2_bit(
        'resnetv2_152x4_bitm_in21k', pretrained=pretrained, num_classes=kwargs.pop('num_classes', 21843),
        layers=[3, 8, 36, 3], width_factor=4, **kwargs)


@register_model
def resnetv2_50x1_bit_distilled(pretrained=False, **kwargs):
    """ ResNetV2-50x1-BiT Distilled
    Paper: Knowledge distillation: A good teacher is patient and consistent - https://arxiv.org/abs/2106.05237
    """
    return _create_resnetv2_bit(
        'resnetv2_50x1_bit_distilled', pretrained=pretrained, layers=[3, 4, 6, 3], width_factor=1, **kwargs)


@register_model
def resnetv2_152x2_bit_teacher(pretrained=False, **kwargs):
    """ ResNetV2-152x2-BiT Teacher
    Paper: Knowledge distillation: A good teacher is patient and consistent - https://arxiv.org/abs/2106.05237
    """
    return _create_resnetv2_bit(
        'resnetv2_152x2_bit_teacher', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=2, **kwargs)


@register_model
def resnetv2_152x2_bit_teacher_384(pretrained=False, **kwargs):
    """ ResNetV2-152xx-BiT Teacher @ 384x384
    Paper: Knowledge distillation: A good teacher is patient and consistent - https://arxiv.org/abs/2106.05237
    """
    return _create_resnetv2_bit(
        'resnetv2_152x2_bit_teacher_384', pretrained=pretrained, layers=[3, 8, 36, 3], width_factor=2, **kwargs)


@register_model
def resnetv2_50(pretrained=False, **kwargs):
    return _create_resnetv2(
        'resnetv2_50', pretrained=pretrained,
        layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d, **kwargs)


@register_model
def resnetv2_50d(pretrained=False, **kwargs):
    return _create_resnetv2(
        'resnetv2_50d', pretrained=pretrained,
        layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d,
        stem_type='deep', avg_down=True, **kwargs)


@register_model
def resnetv2_50t(pretrained=False, **kwargs):
    return _create_resnetv2(
        'resnetv2_50t', pretrained=pretrained,
        layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d,
        stem_type='tiered', avg_down=True, **kwargs)


@register_model
def resnetv2_101(pretrained=False, **kwargs):
    return _create_resnetv2(
        'resnetv2_101', pretrained=pretrained,
        layers=[3, 4, 23, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d, **kwargs)


@register_model
def resnetv2_101d(pretrained=False, **kwargs):
    return _create_resnetv2(
        'resnetv2_101d', pretrained=pretrained,
        layers=[3, 4, 23, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d,
        stem_type='deep', avg_down=True, **kwargs)


@register_model
def resnetv2_152(pretrained=False, **kwargs):
    return _create_resnetv2(
        'resnetv2_152', pretrained=pretrained,
        layers=[3, 8, 36, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d, **kwargs)


@register_model
def resnetv2_152d(pretrained=False, **kwargs):
    return _create_resnetv2(
        'resnetv2_152d', pretrained=pretrained,
        layers=[3, 8, 36, 3], conv_layer=create_conv2d, norm_layer=BatchNormAct2d,
        stem_type='deep', avg_down=True, **kwargs)


# @register_model
# def resnetv2_50ebd(pretrained=False, **kwargs):
#     # FIXME for testing w/ TPU + PyTorch XLA
#     return _create_resnetv2(
#         'resnetv2_50d', pretrained=pretrained,
#         layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=EvoNormBatch2d,
#         stem_type='deep', avg_down=True, **kwargs)
#
#
# @register_model
# def resnetv2_50esd(pretrained=False, **kwargs):
#     # FIXME for testing w/ TPU + PyTorch XLA
#     return _create_resnetv2(
#         'resnetv2_50d', pretrained=pretrained,
#         layers=[3, 4, 6, 3], conv_layer=create_conv2d, norm_layer=EvoNormSample2d,
#         stem_type='deep', avg_down=True, **kwargs)