Spaces:
Runtime error
Runtime error
File size: 20,998 Bytes
a6dac9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
"""RegNet
Paper: `Designing Network Design Spaces` - https://arxiv.org/abs/2003.13678
Original Impl: https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py
Based on original PyTorch impl linked above, but re-wrote to use my own blocks (adapted from ResNet here)
and cleaned up with more descriptive variable names.
Weights from original impl have been modified
* first layer from BGR -> RGB as most PyTorch models are
* removed training specific dict entries from checkpoints and keep model state_dict only
* remap names to match the ones here
Hacked together by / Copyright 2020 Ross Wightman
"""
import numpy as np
import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg
from .layers import ClassifierHead, AvgPool2dSame, ConvBnAct, SEModule, DropPath
from .registry import register_model
def _mcfg(**kwargs):
cfg = dict(se_ratio=0., bottle_ratio=1., stem_width=32)
cfg.update(**kwargs)
return cfg
# Model FLOPS = three trailing digits * 10^8
model_cfgs = dict(
regnetx_002=_mcfg(w0=24, wa=36.44, wm=2.49, group_w=8, depth=13),
regnetx_004=_mcfg(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22),
regnetx_006=_mcfg(w0=48, wa=36.97, wm=2.24, group_w=24, depth=16),
regnetx_008=_mcfg(w0=56, wa=35.73, wm=2.28, group_w=16, depth=16),
regnetx_016=_mcfg(w0=80, wa=34.01, wm=2.25, group_w=24, depth=18),
regnetx_032=_mcfg(w0=88, wa=26.31, wm=2.25, group_w=48, depth=25),
regnetx_040=_mcfg(w0=96, wa=38.65, wm=2.43, group_w=40, depth=23),
regnetx_064=_mcfg(w0=184, wa=60.83, wm=2.07, group_w=56, depth=17),
regnetx_080=_mcfg(w0=80, wa=49.56, wm=2.88, group_w=120, depth=23),
regnetx_120=_mcfg(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19),
regnetx_160=_mcfg(w0=216, wa=55.59, wm=2.1, group_w=128, depth=22),
regnetx_320=_mcfg(w0=320, wa=69.86, wm=2.0, group_w=168, depth=23),
regnety_002=_mcfg(w0=24, wa=36.44, wm=2.49, group_w=8, depth=13, se_ratio=0.25),
regnety_004=_mcfg(w0=48, wa=27.89, wm=2.09, group_w=8, depth=16, se_ratio=0.25),
regnety_006=_mcfg(w0=48, wa=32.54, wm=2.32, group_w=16, depth=15, se_ratio=0.25),
regnety_008=_mcfg(w0=56, wa=38.84, wm=2.4, group_w=16, depth=14, se_ratio=0.25),
regnety_016=_mcfg(w0=48, wa=20.71, wm=2.65, group_w=24, depth=27, se_ratio=0.25),
regnety_032=_mcfg(w0=80, wa=42.63, wm=2.66, group_w=24, depth=21, se_ratio=0.25),
regnety_040=_mcfg(w0=96, wa=31.41, wm=2.24, group_w=64, depth=22, se_ratio=0.25),
regnety_064=_mcfg(w0=112, wa=33.22, wm=2.27, group_w=72, depth=25, se_ratio=0.25),
regnety_080=_mcfg(w0=192, wa=76.82, wm=2.19, group_w=56, depth=17, se_ratio=0.25),
regnety_120=_mcfg(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19, se_ratio=0.25),
regnety_160=_mcfg(w0=200, wa=106.23, wm=2.48, group_w=112, depth=18, se_ratio=0.25),
regnety_320=_mcfg(w0=232, wa=115.89, wm=2.53, group_w=232, depth=20, se_ratio=0.25),
)
def _cfg(url='', **kwargs):
return {
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'stem.conv', 'classifier': 'head.fc',
**kwargs
}
default_cfgs = dict(
regnetx_002=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_002-e7e85e5c.pth'),
regnetx_004=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_004-7d0e9424.pth'),
regnetx_006=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_006-85ec1baa.pth'),
regnetx_008=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_008-d8b470eb.pth'),
regnetx_016=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_016-65ca972a.pth'),
regnetx_032=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_032-ed0c7f7e.pth'),
regnetx_040=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_040-73c2a654.pth'),
regnetx_064=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_064-29278baa.pth'),
regnetx_080=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_080-7c7fcab1.pth'),
regnetx_120=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_120-65d5521e.pth'),
regnetx_160=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_160-c98c4112.pth'),
regnetx_320=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_320-8ea38b93.pth'),
regnety_002=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_002-e68ca334.pth'),
regnety_004=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_004-0db870e6.pth'),
regnety_006=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_006-c67e57ec.pth'),
regnety_008=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_008-dc900dbe.pth'),
regnety_016=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_016-54367f74.pth'),
regnety_032=_cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/regnety_032_ra-7f2439f9.pth',
crop_pct=1.0, test_input_size=(3, 288, 288)),
regnety_040=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_040-f0d569f9.pth'),
regnety_064=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_064-0a48325c.pth'),
regnety_080=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_080-e7f3eb93.pth'),
regnety_120=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_120-721ba79a.pth'),
regnety_160=_cfg(
url='https://dl.fbaipublicfiles.com/deit/regnety_160-a5fe301d.pth', # from Facebook DeiT GitHub repository
crop_pct=1.0, test_input_size=(3, 288, 288)),
regnety_320=_cfg(url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_320-ba464b29.pth'),
)
def quantize_float(f, q):
"""Converts a float to closest non-zero int divisible by q."""
return int(round(f / q) * q)
def adjust_widths_groups_comp(widths, bottle_ratios, groups):
"""Adjusts the compatibility of widths and groups."""
bottleneck_widths = [int(w * b) for w, b in zip(widths, bottle_ratios)]
groups = [min(g, w_bot) for g, w_bot in zip(groups, bottleneck_widths)]
bottleneck_widths = [quantize_float(w_bot, g) for w_bot, g in zip(bottleneck_widths, groups)]
widths = [int(w_bot / b) for w_bot, b in zip(bottleneck_widths, bottle_ratios)]
return widths, groups
def generate_regnet(width_slope, width_initial, width_mult, depth, q=8):
"""Generates per block widths from RegNet parameters."""
assert width_slope >= 0 and width_initial > 0 and width_mult > 1 and width_initial % q == 0
widths_cont = np.arange(depth) * width_slope + width_initial
width_exps = np.round(np.log(widths_cont / width_initial) / np.log(width_mult))
widths = width_initial * np.power(width_mult, width_exps)
widths = np.round(np.divide(widths, q)) * q
num_stages, max_stage = len(np.unique(widths)), width_exps.max() + 1
widths, widths_cont = widths.astype(int).tolist(), widths_cont.tolist()
return widths, num_stages, max_stage, widths_cont
class Bottleneck(nn.Module):
""" RegNet Bottleneck
This is almost exactly the same as a ResNet Bottlneck. The main difference is the SE block is moved from
after conv3 to after conv2. Otherwise, it's just redefining the arguments for groups/bottleneck channels.
"""
def __init__(self, in_chs, out_chs, stride=1, dilation=1, bottleneck_ratio=1, group_width=1, se_ratio=0.25,
downsample=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, aa_layer=None,
drop_block=None, drop_path=None):
super(Bottleneck, self).__init__()
bottleneck_chs = int(round(out_chs * bottleneck_ratio))
groups = bottleneck_chs // group_width
cargs = dict(act_layer=act_layer, norm_layer=norm_layer, aa_layer=aa_layer, drop_block=drop_block)
self.conv1 = ConvBnAct(in_chs, bottleneck_chs, kernel_size=1, **cargs)
self.conv2 = ConvBnAct(
bottleneck_chs, bottleneck_chs, kernel_size=3, stride=stride, dilation=dilation,
groups=groups, **cargs)
if se_ratio:
se_channels = int(round(in_chs * se_ratio))
self.se = SEModule(bottleneck_chs, rd_channels=se_channels)
else:
self.se = None
cargs['act_layer'] = None
self.conv3 = ConvBnAct(bottleneck_chs, out_chs, kernel_size=1, **cargs)
self.act3 = act_layer(inplace=True)
self.downsample = downsample
self.drop_path = drop_path
def zero_init_last_bn(self):
nn.init.zeros_(self.conv3.bn.weight)
def forward(self, x):
shortcut = x
x = self.conv1(x)
x = self.conv2(x)
if self.se is not None:
x = self.se(x)
x = self.conv3(x)
if self.drop_path is not None:
x = self.drop_path(x)
if self.downsample is not None:
shortcut = self.downsample(shortcut)
x += shortcut
x = self.act3(x)
return x
def downsample_conv(
in_chs, out_chs, kernel_size, stride=1, dilation=1, norm_layer=None):
norm_layer = norm_layer or nn.BatchNorm2d
kernel_size = 1 if stride == 1 and dilation == 1 else kernel_size
dilation = dilation if kernel_size > 1 else 1
return ConvBnAct(
in_chs, out_chs, kernel_size, stride=stride, dilation=dilation, norm_layer=norm_layer, act_layer=None)
def downsample_avg(
in_chs, out_chs, kernel_size, stride=1, dilation=1, norm_layer=None):
""" AvgPool Downsampling as in 'D' ResNet variants. This is not in RegNet space but I might experiment."""
norm_layer = norm_layer or nn.BatchNorm2d
avg_stride = stride if dilation == 1 else 1
pool = nn.Identity()
if stride > 1 or dilation > 1:
avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d
pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False)
return nn.Sequential(*[
pool, ConvBnAct(in_chs, out_chs, 1, stride=1, norm_layer=norm_layer, act_layer=None)])
class RegStage(nn.Module):
"""Stage (sequence of blocks w/ the same output shape)."""
def __init__(self, in_chs, out_chs, stride, dilation, depth, bottle_ratio, group_width,
block_fn=Bottleneck, se_ratio=0., drop_path_rates=None, drop_block=None):
super(RegStage, self).__init__()
block_kwargs = {} # FIXME setup to pass various aa, norm, act layer common args
first_dilation = 1 if dilation in (1, 2) else 2
for i in range(depth):
block_stride = stride if i == 0 else 1
block_in_chs = in_chs if i == 0 else out_chs
block_dilation = first_dilation if i == 0 else dilation
if drop_path_rates is not None and drop_path_rates[i] > 0.:
drop_path = DropPath(drop_path_rates[i])
else:
drop_path = None
if (block_in_chs != out_chs) or (block_stride != 1):
proj_block = downsample_conv(block_in_chs, out_chs, 1, block_stride, block_dilation)
else:
proj_block = None
name = "b{}".format(i + 1)
self.add_module(
name, block_fn(
block_in_chs, out_chs, block_stride, block_dilation, bottle_ratio, group_width, se_ratio,
downsample=proj_block, drop_block=drop_block, drop_path=drop_path, **block_kwargs)
)
def forward(self, x):
for block in self.children():
x = block(x)
return x
class RegNet(nn.Module):
"""RegNet model.
Paper: https://arxiv.org/abs/2003.13678
Original Impl: https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py
"""
def __init__(self, cfg, in_chans=3, num_classes=1000, output_stride=32, global_pool='avg', drop_rate=0.,
drop_path_rate=0., zero_init_last_bn=True):
super().__init__()
# TODO add drop block, drop path, anti-aliasing, custom bn/act args
self.num_classes = num_classes
self.drop_rate = drop_rate
assert output_stride in (8, 16, 32)
# Construct the stem
stem_width = cfg['stem_width']
self.stem = ConvBnAct(in_chans, stem_width, 3, stride=2)
self.feature_info = [dict(num_chs=stem_width, reduction=2, module='stem')]
# Construct the stages
prev_width = stem_width
curr_stride = 2
stage_params = self._get_stage_params(cfg, output_stride=output_stride, drop_path_rate=drop_path_rate)
se_ratio = cfg['se_ratio']
for i, stage_args in enumerate(stage_params):
stage_name = "s{}".format(i + 1)
self.add_module(stage_name, RegStage(prev_width, **stage_args, se_ratio=se_ratio))
prev_width = stage_args['out_chs']
curr_stride *= stage_args['stride']
self.feature_info += [dict(num_chs=prev_width, reduction=curr_stride, module=stage_name)]
# Construct the head
self.num_features = prev_width
self.head = ClassifierHead(
in_chs=prev_width, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, mean=0.0, std=0.01)
nn.init.zeros_(m.bias)
if zero_init_last_bn:
for m in self.modules():
if hasattr(m, 'zero_init_last_bn'):
m.zero_init_last_bn()
def _get_stage_params(self, cfg, default_stride=2, output_stride=32, drop_path_rate=0.):
# Generate RegNet ws per block
w_a, w_0, w_m, d = cfg['wa'], cfg['w0'], cfg['wm'], cfg['depth']
widths, num_stages, _, _ = generate_regnet(w_a, w_0, w_m, d)
# Convert to per stage format
stage_widths, stage_depths = np.unique(widths, return_counts=True)
# Use the same group width, bottleneck mult and stride for each stage
stage_groups = [cfg['group_w'] for _ in range(num_stages)]
stage_bottle_ratios = [cfg['bottle_ratio'] for _ in range(num_stages)]
stage_strides = []
stage_dilations = []
net_stride = 2
dilation = 1
for _ in range(num_stages):
if net_stride >= output_stride:
dilation *= default_stride
stride = 1
else:
stride = default_stride
net_stride *= stride
stage_strides.append(stride)
stage_dilations.append(dilation)
stage_dpr = np.split(np.linspace(0, drop_path_rate, d), np.cumsum(stage_depths[:-1]))
# Adjust the compatibility of ws and gws
stage_widths, stage_groups = adjust_widths_groups_comp(stage_widths, stage_bottle_ratios, stage_groups)
param_names = ['out_chs', 'stride', 'dilation', 'depth', 'bottle_ratio', 'group_width', 'drop_path_rates']
stage_params = [
dict(zip(param_names, params)) for params in
zip(stage_widths, stage_strides, stage_dilations, stage_depths, stage_bottle_ratios, stage_groups,
stage_dpr)]
return stage_params
def get_classifier(self):
return self.head.fc
def reset_classifier(self, num_classes, global_pool='avg'):
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
def forward_features(self, x):
for block in list(self.children())[:-1]:
x = block(x)
return x
def forward(self, x):
for block in self.children():
x = block(x)
return x
def _filter_fn(state_dict):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
if 'model' in state_dict:
# For DeiT trained regnety_160 pretraiend model
state_dict = state_dict['model']
return state_dict
def _create_regnet(variant, pretrained, **kwargs):
return build_model_with_cfg(
RegNet, variant, pretrained,
default_cfg=default_cfgs[variant],
model_cfg=model_cfgs[variant],
pretrained_filter_fn=_filter_fn,
**kwargs)
@register_model
def regnetx_002(pretrained=False, **kwargs):
"""RegNetX-200MF"""
return _create_regnet('regnetx_002', pretrained, **kwargs)
@register_model
def regnetx_004(pretrained=False, **kwargs):
"""RegNetX-400MF"""
return _create_regnet('regnetx_004', pretrained, **kwargs)
@register_model
def regnetx_006(pretrained=False, **kwargs):
"""RegNetX-600MF"""
return _create_regnet('regnetx_006', pretrained, **kwargs)
@register_model
def regnetx_008(pretrained=False, **kwargs):
"""RegNetX-800MF"""
return _create_regnet('regnetx_008', pretrained, **kwargs)
@register_model
def regnetx_016(pretrained=False, **kwargs):
"""RegNetX-1.6GF"""
return _create_regnet('regnetx_016', pretrained, **kwargs)
@register_model
def regnetx_032(pretrained=False, **kwargs):
"""RegNetX-3.2GF"""
return _create_regnet('regnetx_032', pretrained, **kwargs)
@register_model
def regnetx_040(pretrained=False, **kwargs):
"""RegNetX-4.0GF"""
return _create_regnet('regnetx_040', pretrained, **kwargs)
@register_model
def regnetx_064(pretrained=False, **kwargs):
"""RegNetX-6.4GF"""
return _create_regnet('regnetx_064', pretrained, **kwargs)
@register_model
def regnetx_080(pretrained=False, **kwargs):
"""RegNetX-8.0GF"""
return _create_regnet('regnetx_080', pretrained, **kwargs)
@register_model
def regnetx_120(pretrained=False, **kwargs):
"""RegNetX-12GF"""
return _create_regnet('regnetx_120', pretrained, **kwargs)
@register_model
def regnetx_160(pretrained=False, **kwargs):
"""RegNetX-16GF"""
return _create_regnet('regnetx_160', pretrained, **kwargs)
@register_model
def regnetx_320(pretrained=False, **kwargs):
"""RegNetX-32GF"""
return _create_regnet('regnetx_320', pretrained, **kwargs)
@register_model
def regnety_002(pretrained=False, **kwargs):
"""RegNetY-200MF"""
return _create_regnet('regnety_002', pretrained, **kwargs)
@register_model
def regnety_004(pretrained=False, **kwargs):
"""RegNetY-400MF"""
return _create_regnet('regnety_004', pretrained, **kwargs)
@register_model
def regnety_006(pretrained=False, **kwargs):
"""RegNetY-600MF"""
return _create_regnet('regnety_006', pretrained, **kwargs)
@register_model
def regnety_008(pretrained=False, **kwargs):
"""RegNetY-800MF"""
return _create_regnet('regnety_008', pretrained, **kwargs)
@register_model
def regnety_016(pretrained=False, **kwargs):
"""RegNetY-1.6GF"""
return _create_regnet('regnety_016', pretrained, **kwargs)
@register_model
def regnety_032(pretrained=False, **kwargs):
"""RegNetY-3.2GF"""
return _create_regnet('regnety_032', pretrained, **kwargs)
@register_model
def regnety_040(pretrained=False, **kwargs):
"""RegNetY-4.0GF"""
return _create_regnet('regnety_040', pretrained, **kwargs)
@register_model
def regnety_064(pretrained=False, **kwargs):
"""RegNetY-6.4GF"""
return _create_regnet('regnety_064', pretrained, **kwargs)
@register_model
def regnety_080(pretrained=False, **kwargs):
"""RegNetY-8.0GF"""
return _create_regnet('regnety_080', pretrained, **kwargs)
@register_model
def regnety_120(pretrained=False, **kwargs):
"""RegNetY-12GF"""
return _create_regnet('regnety_120', pretrained, **kwargs)
@register_model
def regnety_160(pretrained=False, **kwargs):
"""RegNetY-16GF"""
return _create_regnet('regnety_160', pretrained, **kwargs)
@register_model
def regnety_320(pretrained=False, **kwargs):
"""RegNetY-32GF"""
return _create_regnet('regnety_320', pretrained, **kwargs)
|