Spaces:
Runtime error
Runtime error
File size: 21,130 Bytes
a6dac9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
""" LeViT
Paper: `LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference`
- https://arxiv.org/abs/2104.01136
@article{graham2021levit,
title={LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference},
author={Benjamin Graham and Alaaeldin El-Nouby and Hugo Touvron and Pierre Stock and Armand Joulin and Herv\'e J\'egou and Matthijs Douze},
journal={arXiv preprint arXiv:22104.01136},
year={2021}
}
Adapted from official impl at https://github.com/facebookresearch/LeViT, original copyright bellow.
This version combines both conv/linear models and fixes torchscript compatibility.
Modifications by/coyright Copyright 2021 Ross Wightman
"""
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
# Modified from
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
# Copyright 2020 Ross Wightman, Apache-2.0 License
import itertools
from copy import deepcopy
from functools import partial
from typing import Dict
import torch
import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_STD, IMAGENET_DEFAULT_MEAN
from .helpers import build_model_with_cfg, overlay_external_default_cfg
from .layers import to_ntuple, get_act_layer
from .vision_transformer import trunc_normal_
from .registry import register_model
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.0.c', 'classifier': ('head.l', 'head_dist.l'),
**kwargs
}
default_cfgs = dict(
levit_128s=_cfg(
url='https://dl.fbaipublicfiles.com/LeViT/LeViT-128S-96703c44.pth'
),
levit_128=_cfg(
url='https://dl.fbaipublicfiles.com/LeViT/LeViT-128-b88c2750.pth'
),
levit_192=_cfg(
url='https://dl.fbaipublicfiles.com/LeViT/LeViT-192-92712e41.pth'
),
levit_256=_cfg(
url='https://dl.fbaipublicfiles.com/LeViT/LeViT-256-13b5763e.pth'
),
levit_384=_cfg(
url='https://dl.fbaipublicfiles.com/LeViT/LeViT-384-9bdaf2e2.pth'
),
)
model_cfgs = dict(
levit_128s=dict(
embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 6, 8), depth=(2, 3, 4)),
levit_128=dict(
embed_dim=(128, 256, 384), key_dim=16, num_heads=(4, 8, 12), depth=(4, 4, 4)),
levit_192=dict(
embed_dim=(192, 288, 384), key_dim=32, num_heads=(3, 5, 6), depth=(4, 4, 4)),
levit_256=dict(
embed_dim=(256, 384, 512), key_dim=32, num_heads=(4, 6, 8), depth=(4, 4, 4)),
levit_384=dict(
embed_dim=(384, 512, 768), key_dim=32, num_heads=(6, 9, 12), depth=(4, 4, 4)),
)
__all__ = ['Levit']
@register_model
def levit_128s(pretrained=False, use_conv=False, **kwargs):
return create_levit(
'levit_128s', pretrained=pretrained, use_conv=use_conv, **kwargs)
@register_model
def levit_128(pretrained=False, use_conv=False, **kwargs):
return create_levit(
'levit_128', pretrained=pretrained, use_conv=use_conv, **kwargs)
@register_model
def levit_192(pretrained=False, use_conv=False, **kwargs):
return create_levit(
'levit_192', pretrained=pretrained, use_conv=use_conv, **kwargs)
@register_model
def levit_256(pretrained=False, use_conv=False, **kwargs):
return create_levit(
'levit_256', pretrained=pretrained, use_conv=use_conv, **kwargs)
@register_model
def levit_384(pretrained=False, use_conv=False, **kwargs):
return create_levit(
'levit_384', pretrained=pretrained, use_conv=use_conv, **kwargs)
class ConvNorm(nn.Sequential):
def __init__(
self, a, b, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1, resolution=-10000):
super().__init__()
self.add_module('c', nn.Conv2d(a, b, ks, stride, pad, dilation, groups, bias=False))
bn = nn.BatchNorm2d(b)
nn.init.constant_(bn.weight, bn_weight_init)
nn.init.constant_(bn.bias, 0)
self.add_module('bn', bn)
@torch.no_grad()
def fuse(self):
c, bn = self._modules.values()
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
w = c.weight * w[:, None, None, None]
b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5
m = nn.Conv2d(
w.size(1), w.size(0), w.shape[2:], stride=self.c.stride,
padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups)
m.weight.data.copy_(w)
m.bias.data.copy_(b)
return m
class LinearNorm(nn.Sequential):
def __init__(self, a, b, bn_weight_init=1, resolution=-100000):
super().__init__()
self.add_module('c', nn.Linear(a, b, bias=False))
bn = nn.BatchNorm1d(b)
nn.init.constant_(bn.weight, bn_weight_init)
nn.init.constant_(bn.bias, 0)
self.add_module('bn', bn)
@torch.no_grad()
def fuse(self):
l, bn = self._modules.values()
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
w = l.weight * w[:, None]
b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5
m = nn.Linear(w.size(1), w.size(0))
m.weight.data.copy_(w)
m.bias.data.copy_(b)
return m
def forward(self, x):
x = self.c(x)
return self.bn(x.flatten(0, 1)).reshape_as(x)
class NormLinear(nn.Sequential):
def __init__(self, a, b, bias=True, std=0.02):
super().__init__()
self.add_module('bn', nn.BatchNorm1d(a))
l = nn.Linear(a, b, bias=bias)
trunc_normal_(l.weight, std=std)
if bias:
nn.init.constant_(l.bias, 0)
self.add_module('l', l)
@torch.no_grad()
def fuse(self):
bn, l = self._modules.values()
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
b = bn.bias - self.bn.running_mean * self.bn.weight / (bn.running_var + bn.eps) ** 0.5
w = l.weight * w[None, :]
if l.bias is None:
b = b @ self.l.weight.T
else:
b = (l.weight @ b[:, None]).view(-1) + self.l.bias
m = nn.Linear(w.size(1), w.size(0))
m.weight.data.copy_(w)
m.bias.data.copy_(b)
return m
def stem_b16(in_chs, out_chs, activation, resolution=224):
return nn.Sequential(
ConvNorm(in_chs, out_chs // 8, 3, 2, 1, resolution=resolution),
activation(),
ConvNorm(out_chs // 8, out_chs // 4, 3, 2, 1, resolution=resolution // 2),
activation(),
ConvNorm(out_chs // 4, out_chs // 2, 3, 2, 1, resolution=resolution // 4),
activation(),
ConvNorm(out_chs // 2, out_chs, 3, 2, 1, resolution=resolution // 8))
class Residual(nn.Module):
def __init__(self, m, drop):
super().__init__()
self.m = m
self.drop = drop
def forward(self, x):
if self.training and self.drop > 0:
return x + self.m(x) * torch.rand(
x.size(0), 1, 1, device=x.device).ge_(self.drop).div(1 - self.drop).detach()
else:
return x + self.m(x)
class Subsample(nn.Module):
def __init__(self, stride, resolution):
super().__init__()
self.stride = stride
self.resolution = resolution
def forward(self, x):
B, N, C = x.shape
x = x.view(B, self.resolution, self.resolution, C)[:, ::self.stride, ::self.stride]
return x.reshape(B, -1, C)
class Attention(nn.Module):
ab: Dict[str, torch.Tensor]
def __init__(
self, dim, key_dim, num_heads=8, attn_ratio=4, act_layer=None, resolution=14, use_conv=False):
super().__init__()
self.num_heads = num_heads
self.scale = key_dim ** -0.5
self.key_dim = key_dim
self.nh_kd = nh_kd = key_dim * num_heads
self.d = int(attn_ratio * key_dim)
self.dh = int(attn_ratio * key_dim) * num_heads
self.attn_ratio = attn_ratio
self.use_conv = use_conv
ln_layer = ConvNorm if self.use_conv else LinearNorm
h = self.dh + nh_kd * 2
self.qkv = ln_layer(dim, h, resolution=resolution)
self.proj = nn.Sequential(
act_layer(),
ln_layer(self.dh, dim, bn_weight_init=0, resolution=resolution))
points = list(itertools.product(range(resolution), range(resolution)))
N = len(points)
attention_offsets = {}
idxs = []
for p1 in points:
for p2 in points:
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = nn.Parameter(torch.zeros(num_heads, len(attention_offsets)))
self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N, N))
self.ab = {}
@torch.no_grad()
def train(self, mode=True):
super().train(mode)
if mode and self.ab:
self.ab = {} # clear ab cache
def get_attention_biases(self, device: torch.device) -> torch.Tensor:
if self.training:
return self.attention_biases[:, self.attention_bias_idxs]
else:
device_key = str(device)
if device_key not in self.ab:
self.ab[device_key] = self.attention_biases[:, self.attention_bias_idxs]
return self.ab[device_key]
def forward(self, x): # x (B,C,H,W)
if self.use_conv:
B, C, H, W = x.shape
q, k, v = self.qkv(x).view(B, self.num_heads, -1, H * W).split([self.key_dim, self.key_dim, self.d], dim=2)
attn = (q.transpose(-2, -1) @ k) * self.scale + self.get_attention_biases(x.device)
attn = attn.softmax(dim=-1)
x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W)
else:
B, N, C = x.shape
qkv = self.qkv(x)
q, k, v = qkv.view(B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.d], dim=3)
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
attn = q @ k.transpose(-2, -1) * self.scale + self.get_attention_biases(x.device)
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh)
x = self.proj(x)
return x
class AttentionSubsample(nn.Module):
ab: Dict[str, torch.Tensor]
def __init__(
self, in_dim, out_dim, key_dim, num_heads=8, attn_ratio=2,
act_layer=None, stride=2, resolution=14, resolution_=7, use_conv=False):
super().__init__()
self.num_heads = num_heads
self.scale = key_dim ** -0.5
self.key_dim = key_dim
self.nh_kd = nh_kd = key_dim * num_heads
self.d = int(attn_ratio * key_dim)
self.dh = self.d * self.num_heads
self.attn_ratio = attn_ratio
self.resolution_ = resolution_
self.resolution_2 = resolution_ ** 2
self.use_conv = use_conv
if self.use_conv:
ln_layer = ConvNorm
sub_layer = partial(nn.AvgPool2d, kernel_size=1, padding=0)
else:
ln_layer = LinearNorm
sub_layer = partial(Subsample, resolution=resolution)
h = self.dh + nh_kd
self.kv = ln_layer(in_dim, h, resolution=resolution)
self.q = nn.Sequential(
sub_layer(stride=stride),
ln_layer(in_dim, nh_kd, resolution=resolution_))
self.proj = nn.Sequential(
act_layer(),
ln_layer(self.dh, out_dim, resolution=resolution_))
self.stride = stride
self.resolution = resolution
points = list(itertools.product(range(resolution), range(resolution)))
points_ = list(itertools.product(range(resolution_), range(resolution_)))
N = len(points)
N_ = len(points_)
attention_offsets = {}
idxs = []
for p1 in points_:
for p2 in points:
size = 1
offset = (
abs(p1[0] * stride - p2[0] + (size - 1) / 2),
abs(p1[1] * stride - p2[1] + (size - 1) / 2))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = nn.Parameter(torch.zeros(num_heads, len(attention_offsets)))
self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N_, N))
self.ab = {} # per-device attention_biases cache
@torch.no_grad()
def train(self, mode=True):
super().train(mode)
if mode and self.ab:
self.ab = {} # clear ab cache
def get_attention_biases(self, device: torch.device) -> torch.Tensor:
if self.training:
return self.attention_biases[:, self.attention_bias_idxs]
else:
device_key = str(device)
if device_key not in self.ab:
self.ab[device_key] = self.attention_biases[:, self.attention_bias_idxs]
return self.ab[device_key]
def forward(self, x):
if self.use_conv:
B, C, H, W = x.shape
k, v = self.kv(x).view(B, self.num_heads, -1, H * W).split([self.key_dim, self.d], dim=2)
q = self.q(x).view(B, self.num_heads, self.key_dim, self.resolution_2)
attn = (q.transpose(-2, -1) @ k) * self.scale + self.get_attention_biases(x.device)
attn = attn.softmax(dim=-1)
x = (v @ attn.transpose(-2, -1)).reshape(B, -1, self.resolution_, self.resolution_)
else:
B, N, C = x.shape
k, v = self.kv(x).view(B, N, self.num_heads, -1).split([self.key_dim, self.d], dim=3)
k = k.permute(0, 2, 1, 3) # BHNC
v = v.permute(0, 2, 1, 3) # BHNC
q = self.q(x).view(B, self.resolution_2, self.num_heads, self.key_dim).permute(0, 2, 1, 3)
attn = q @ k.transpose(-2, -1) * self.scale + self.get_attention_biases(x.device)
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, -1, self.dh)
x = self.proj(x)
return x
class Levit(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
NOTE: distillation is defaulted to True since pretrained weights use it, will cause problems
w/ train scripts that don't take tuple outputs,
"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
embed_dim=(192,),
key_dim=64,
depth=(12,),
num_heads=(3,),
attn_ratio=2,
mlp_ratio=2,
hybrid_backbone=None,
down_ops=None,
act_layer='hard_swish',
attn_act_layer='hard_swish',
distillation=True,
use_conv=False,
drop_rate=0.,
drop_path_rate=0.):
super().__init__()
act_layer = get_act_layer(act_layer)
attn_act_layer = get_act_layer(attn_act_layer)
if isinstance(img_size, tuple):
# FIXME origin impl passes single img/res dim through whole hierarchy,
# not sure this model will be used enough to spend time fixing it.
assert img_size[0] == img_size[1]
img_size = img_size[0]
self.num_classes = num_classes
self.num_features = embed_dim[-1]
self.embed_dim = embed_dim
N = len(embed_dim)
assert len(depth) == len(num_heads) == N
key_dim = to_ntuple(N)(key_dim)
attn_ratio = to_ntuple(N)(attn_ratio)
mlp_ratio = to_ntuple(N)(mlp_ratio)
down_ops = down_ops or (
# ('Subsample',key_dim, num_heads, attn_ratio, mlp_ratio, stride)
('Subsample', key_dim[0], embed_dim[0] // key_dim[0], 4, 2, 2),
('Subsample', key_dim[0], embed_dim[1] // key_dim[1], 4, 2, 2),
('',)
)
self.distillation = distillation
self.use_conv = use_conv
ln_layer = ConvNorm if self.use_conv else LinearNorm
self.patch_embed = hybrid_backbone or stem_b16(in_chans, embed_dim[0], activation=act_layer)
self.blocks = []
resolution = img_size // patch_size
for i, (ed, kd, dpth, nh, ar, mr, do) in enumerate(
zip(embed_dim, key_dim, depth, num_heads, attn_ratio, mlp_ratio, down_ops)):
for _ in range(dpth):
self.blocks.append(
Residual(
Attention(
ed, kd, nh, attn_ratio=ar, act_layer=attn_act_layer,
resolution=resolution, use_conv=use_conv),
drop_path_rate))
if mr > 0:
h = int(ed * mr)
self.blocks.append(
Residual(nn.Sequential(
ln_layer(ed, h, resolution=resolution),
act_layer(),
ln_layer(h, ed, bn_weight_init=0, resolution=resolution),
), drop_path_rate))
if do[0] == 'Subsample':
# ('Subsample',key_dim, num_heads, attn_ratio, mlp_ratio, stride)
resolution_ = (resolution - 1) // do[5] + 1
self.blocks.append(
AttentionSubsample(
*embed_dim[i:i + 2], key_dim=do[1], num_heads=do[2],
attn_ratio=do[3], act_layer=attn_act_layer, stride=do[5],
resolution=resolution, resolution_=resolution_, use_conv=use_conv))
resolution = resolution_
if do[4] > 0: # mlp_ratio
h = int(embed_dim[i + 1] * do[4])
self.blocks.append(
Residual(nn.Sequential(
ln_layer(embed_dim[i + 1], h, resolution=resolution),
act_layer(),
ln_layer(h, embed_dim[i + 1], bn_weight_init=0, resolution=resolution),
), drop_path_rate))
self.blocks = nn.Sequential(*self.blocks)
# Classifier head
self.head = NormLinear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
self.head_dist = None
if distillation:
self.head_dist = NormLinear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
@torch.jit.ignore
def no_weight_decay(self):
return {x for x in self.state_dict().keys() if 'attention_biases' in x}
def get_classifier(self):
if self.head_dist is None:
return self.head
else:
return self.head, self.head_dist
def reset_classifier(self, num_classes, global_pool='', distillation=None):
self.num_classes = num_classes
self.head = NormLinear(self.embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
if distillation is not None:
self.distillation = distillation
if self.distillation:
self.head_dist = NormLinear(self.embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity()
else:
self.head_dist = None
def forward_features(self, x):
x = self.patch_embed(x)
if not self.use_conv:
x = x.flatten(2).transpose(1, 2)
x = self.blocks(x)
x = x.mean((-2, -1)) if self.use_conv else x.mean(1)
return x
def forward(self, x):
x = self.forward_features(x)
if self.head_dist is not None:
x, x_dist = self.head(x), self.head_dist(x)
if self.training and not torch.jit.is_scripting():
return x, x_dist
else:
# during inference, return the average of both classifier predictions
return (x + x_dist) / 2
else:
x = self.head(x)
return x
def checkpoint_filter_fn(state_dict, model):
if 'model' in state_dict:
# For deit models
state_dict = state_dict['model']
D = model.state_dict()
for k in state_dict.keys():
if k in D and D[k].ndim == 4 and state_dict[k].ndim == 2:
state_dict[k] = state_dict[k][:, :, None, None]
return state_dict
def create_levit(variant, pretrained=False, default_cfg=None, fuse=False, **kwargs):
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Vision Transformer models.')
model_cfg = dict(**model_cfgs[variant], **kwargs)
model = build_model_with_cfg(
Levit, variant, pretrained,
default_cfg=default_cfgs[variant],
pretrained_filter_fn=checkpoint_filter_fn,
**model_cfg)
#if fuse:
# utils.replace_batchnorm(model)
return model
|