Spaces:
Running
Running
Asankhaya Sharma
commited on
Commit
·
cae23e1
1
Parent(s):
033cc04
add stats
Browse files- main.py +67 -31
- question.py +12 -7
- requirements.txt +1 -1
- stats.py +5 -0
main.py
CHANGED
@@ -7,6 +7,10 @@ from question import chat_with_doc
|
|
7 |
from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings
|
8 |
from langchain.vectorstores import SupabaseVectorStore
|
9 |
from supabase import Client, create_client
|
|
|
|
|
|
|
|
|
10 |
|
11 |
supabase_url = st.secrets.SUPABASE_URL
|
12 |
supabase_key = st.secrets.SUPABASE_KEY
|
@@ -19,7 +23,6 @@ username = st.secrets.username
|
|
19 |
|
20 |
# embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
21 |
|
22 |
-
|
23 |
embeddings = HuggingFaceInferenceAPIEmbeddings(
|
24 |
api_key=hf_api_key,
|
25 |
model_name="BAAI/bge-large-en-v1.5"
|
@@ -36,38 +39,71 @@ if anthropic_api_key:
|
|
36 |
models += ["claude-v1", "claude-v1.3",
|
37 |
"claude-instant-v1-100k", "claude-instant-v1.1-100k"]
|
38 |
|
39 |
-
|
40 |
-
st.
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
st.
|
53 |
-
st.markdown("
|
54 |
|
55 |
-
st.markdown("---\n\n")
|
56 |
|
57 |
-
# Initialize session state variables
|
58 |
-
if 'model' not in st.session_state:
|
59 |
-
|
60 |
-
if 'temperature' not in st.session_state:
|
61 |
-
|
62 |
-
if 'chunk_size' not in st.session_state:
|
63 |
-
|
64 |
-
if 'chunk_overlap' not in st.session_state:
|
65 |
-
|
66 |
-
if 'max_tokens' not in st.session_state:
|
67 |
-
|
68 |
-
if 'username' not in st.session_state:
|
69 |
-
|
70 |
|
71 |
-
chat_with_doc(st.session_state['model'], vector_store, stats_db=supabase)
|
72 |
|
73 |
-
st.markdown("---\n\n")
|
|
|
7 |
from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings
|
8 |
from langchain.vectorstores import SupabaseVectorStore
|
9 |
from supabase import Client, create_client
|
10 |
+
from stats import add_usage
|
11 |
+
from langchain.llms import HuggingFaceEndpoint
|
12 |
+
from langchain.chains import ConversationalRetrievalChain
|
13 |
+
from langchain.memory import ConversationBufferMemory
|
14 |
|
15 |
supabase_url = st.secrets.SUPABASE_URL
|
16 |
supabase_key = st.secrets.SUPABASE_KEY
|
|
|
23 |
|
24 |
# embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
25 |
|
|
|
26 |
embeddings = HuggingFaceInferenceAPIEmbeddings(
|
27 |
api_key=hf_api_key,
|
28 |
model_name="BAAI/bge-large-en-v1.5"
|
|
|
39 |
models += ["claude-v1", "claude-v1.3",
|
40 |
"claude-instant-v1-100k", "claude-instant-v1.1-100k"]
|
41 |
|
42 |
+
if 'question' in st.query_params:
|
43 |
+
query = st.query_params['question']
|
44 |
+
model = "meta-llama/Llama-2-70b-chat-hf"
|
45 |
+
temp = 0.1
|
46 |
+
max_tokens = 500
|
47 |
+
add_usage(supabase, "api", "prompt" + query, {"model": model, "temperature": temp})
|
48 |
+
# print(st.session_state['max_tokens'])
|
49 |
+
endpoint_url = ("https://api-inference.huggingface.co/models/"+ model)
|
50 |
+
model_kwargs = {"temperature" : temp,
|
51 |
+
"max_new_tokens" : max_tokens,
|
52 |
+
"return_full_text" : False}
|
53 |
+
hf = HuggingFaceEndpoint(
|
54 |
+
endpoint_url=endpoint_url,
|
55 |
+
task="text-generation",
|
56 |
+
huggingfacehub_api_token=hf_api_key,
|
57 |
+
model_kwargs=model_kwargs
|
58 |
+
)
|
59 |
+
memory = ConversationBufferMemory(memory_key="chat_history", input_key='question', output_key='answer', return_messages=True)
|
60 |
+
qa = ConversationalRetrievalChain.from_llm(hf, retriever=vector_store.as_retriever(search_kwargs={"score_threshold": 0.8, "k": 4,"filter": {"user": username}}), memory=memory, return_source_documents=True)
|
61 |
+
model_response = qa({"question": query})
|
62 |
+
# print( model_response["answer"])
|
63 |
+
sources = model_response["source_documents"]
|
64 |
+
# print(sources)
|
65 |
+
if len(sources) > 0:
|
66 |
+
json = {"response": model_response["answer"]}
|
67 |
+
st.code(json, language="json")
|
68 |
+
else:
|
69 |
+
json = {"response": "I am sorry, I do not have enough information to provide an answer. If there is a public source of data that you would like to add, please email [email protected]."}
|
70 |
+
st.code(json, language="json")
|
71 |
+
memory.clear()
|
72 |
+
else:
|
73 |
+
# Set the theme
|
74 |
+
st.set_page_config(
|
75 |
+
page_title="Securade.ai - Safety Copilot",
|
76 |
+
page_icon="https://securade.ai/favicon.ico",
|
77 |
+
layout="centered",
|
78 |
+
initial_sidebar_state="collapsed",
|
79 |
+
menu_items={
|
80 |
+
"About": "# Securade.ai Safety Copilot v0.1\n [https://securade.ai](https://securade.ai)",
|
81 |
+
"Get Help" : "https://securade.ai",
|
82 |
+
"Report a Bug": "mailto:[email protected]"
|
83 |
+
}
|
84 |
+
)
|
85 |
+
|
86 |
+
st.title("👷♂️ Safety Copilot 🦺")
|
87 |
|
88 |
+
st.markdown("Chat with your personal safety assistant about any health & safety related queries.")
|
89 |
+
st.markdown("Up-to-date with latest OSH regulations for Singapore, Indonesia, Malaysia & other parts of Asia.")
|
90 |
|
91 |
+
st.markdown("---\n\n")
|
92 |
|
93 |
+
# Initialize session state variables
|
94 |
+
if 'model' not in st.session_state:
|
95 |
+
st.session_state['model'] = "meta-llama/Llama-2-70b-chat-hf"
|
96 |
+
if 'temperature' not in st.session_state:
|
97 |
+
st.session_state['temperature'] = 0.1
|
98 |
+
if 'chunk_size' not in st.session_state:
|
99 |
+
st.session_state['chunk_size'] = 500
|
100 |
+
if 'chunk_overlap' not in st.session_state:
|
101 |
+
st.session_state['chunk_overlap'] = 0
|
102 |
+
if 'max_tokens' not in st.session_state:
|
103 |
+
st.session_state['max_tokens'] = 500
|
104 |
+
if 'username' not in st.session_state:
|
105 |
+
st.session_state['username'] = username
|
106 |
|
107 |
+
chat_with_doc(st.session_state['model'], vector_store, stats_db=supabase)
|
108 |
|
109 |
+
st.markdown("---\n\n")
|
question.py
CHANGED
@@ -7,7 +7,7 @@ from langchain.llms import OpenAI
|
|
7 |
from langchain.llms import HuggingFaceEndpoint
|
8 |
from langchain.chat_models import ChatAnthropic
|
9 |
from langchain.vectorstores import SupabaseVectorStore
|
10 |
-
from stats import add_usage
|
11 |
|
12 |
memory = ConversationBufferMemory(memory_key="chat_history", input_key='question', output_key='answer', return_messages=True)
|
13 |
openai_api_key = st.secrets.openai_api_key
|
@@ -15,13 +15,13 @@ anthropic_api_key = st.secrets.anthropic_api_key
|
|
15 |
hf_api_key = st.secrets.hf_api_key
|
16 |
logger = get_logger(__name__)
|
17 |
|
18 |
-
|
19 |
def chat_with_doc(model, vector_store: SupabaseVectorStore, stats_db):
|
20 |
|
21 |
if 'chat_history' not in st.session_state:
|
22 |
st.session_state['chat_history'] = []
|
23 |
-
|
24 |
-
|
|
|
25 |
columns = st.columns(2)
|
26 |
with columns[0]:
|
27 |
button = st.button("Ask")
|
@@ -62,16 +62,21 @@ def chat_with_doc(model, vector_store: SupabaseVectorStore, stats_db):
|
|
62 |
huggingfacehub_api_token=hf_api_key,
|
63 |
model_kwargs=model_kwargs
|
64 |
)
|
65 |
-
qa = ConversationalRetrievalChain.from_llm(hf, retriever=vector_store.as_retriever(search_kwargs={"score_threshold": 0.
|
66 |
|
67 |
st.session_state['chat_history'].append(("You", question))
|
68 |
|
69 |
# Generate model's response and add it to chat history
|
70 |
model_response = qa({"question": question})
|
71 |
logger.info('Result: %s', model_response["answer"])
|
72 |
-
|
73 |
-
st.session_state['chat_history'].append(("Safety Copilot", model_response["answer"]))
|
74 |
logger.info('Sources: %s', model_response["source_documents"])
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
# Display chat history
|
77 |
st.empty()
|
|
|
7 |
from langchain.llms import HuggingFaceEndpoint
|
8 |
from langchain.chat_models import ChatAnthropic
|
9 |
from langchain.vectorstores import SupabaseVectorStore
|
10 |
+
from stats import add_usage, get_usage
|
11 |
|
12 |
memory = ConversationBufferMemory(memory_key="chat_history", input_key='question', output_key='answer', return_messages=True)
|
13 |
openai_api_key = st.secrets.openai_api_key
|
|
|
15 |
hf_api_key = st.secrets.hf_api_key
|
16 |
logger = get_logger(__name__)
|
17 |
|
|
|
18 |
def chat_with_doc(model, vector_store: SupabaseVectorStore, stats_db):
|
19 |
|
20 |
if 'chat_history' not in st.session_state:
|
21 |
st.session_state['chat_history'] = []
|
22 |
+
|
23 |
+
stats = str(get_usage(stats_db))
|
24 |
+
question = st.text_area("## Ask a question (" + stats + " queries answered so far)", max_chars=500)
|
25 |
columns = st.columns(2)
|
26 |
with columns[0]:
|
27 |
button = st.button("Ask")
|
|
|
62 |
huggingfacehub_api_token=hf_api_key,
|
63 |
model_kwargs=model_kwargs
|
64 |
)
|
65 |
+
qa = ConversationalRetrievalChain.from_llm(hf, retriever=vector_store.as_retriever(search_kwargs={"score_threshold": 0.8, "k": 4,"filter": {"user": st.session_state["username"]}}), memory=memory, verbose=True, return_source_documents=True)
|
66 |
|
67 |
st.session_state['chat_history'].append(("You", question))
|
68 |
|
69 |
# Generate model's response and add it to chat history
|
70 |
model_response = qa({"question": question})
|
71 |
logger.info('Result: %s', model_response["answer"])
|
72 |
+
sources = model_response["source_documents"]
|
|
|
73 |
logger.info('Sources: %s', model_response["source_documents"])
|
74 |
+
|
75 |
+
if len(sources) > 0:
|
76 |
+
st.session_state['chat_history'].append(("Safety Copilot", model_response["answer"]))
|
77 |
+
else:
|
78 |
+
st.session_state['chat_history'].append(("Safety Copilot", "I am sorry, I do not have enough information to provide an answer. If there is a public source of data that you would like to add, please email [email protected]."))
|
79 |
+
|
80 |
|
81 |
# Display chat history
|
82 |
st.empty()
|
requirements.txt
CHANGED
@@ -3,7 +3,7 @@ Markdown==3.4.3
|
|
3 |
openai==0.27.6
|
4 |
pdf2image==1.16.3
|
5 |
pypdf==3.8.1
|
6 |
-
streamlit==1.
|
7 |
StrEnum==0.4.10
|
8 |
supabase==1.0.3
|
9 |
tiktoken==0.4.0
|
|
|
3 |
openai==0.27.6
|
4 |
pdf2image==1.16.3
|
5 |
pypdf==3.8.1
|
6 |
+
streamlit==1.30.0
|
7 |
StrEnum==0.4.10
|
8 |
supabase==1.0.3
|
9 |
tiktoken==0.4.0
|
stats.py
CHANGED
@@ -29,3 +29,8 @@ def add_usage(supabase, type, details, metadata):
|
|
29 |
"details": details,
|
30 |
"metadata": metadata
|
31 |
}).execute()
|
|
|
|
|
|
|
|
|
|
|
|
29 |
"details": details,
|
30 |
"metadata": metadata
|
31 |
}).execute()
|
32 |
+
|
33 |
+
def get_usage(supabase):
|
34 |
+
# Returns the number of rows in the stats table for the last 24 hours
|
35 |
+
response = supabase.table("stats").select("id", count="exact").execute()
|
36 |
+
return response.count
|