safety-copilot / main.py
codelion's picture
Update main.py
7b2a1d4 verified
# main.py
import os
import streamlit as st
import anthropic
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_community.llms import HuggingFaceEndpoint
from langchain_community.vectorstores import SupabaseVectorStore
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from supabase import Client, create_client
from streamlit.logger import get_logger
from stats import get_usage, add_usage
supabase_url = st.secrets.SUPABASE_URL
supabase_key = st.secrets.SUPABASE_KEY
openai_api_key = st.secrets.openai_api_key
anthropic_api_key = st.secrets.anthropic_api_key
hf_api_key = st.secrets.hf_api_key
username = st.secrets.username
supabase: Client = create_client(supabase_url, supabase_key)
logger = get_logger(__name__)
embeddings = HuggingFaceInferenceAPIEmbeddings(
api_key=hf_api_key,
model_name="BAAI/bge-large-en-v1.5"
)
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
vector_store = SupabaseVectorStore(supabase, embeddings, query_name='match_documents', table_name="documents")
memory = ConversationBufferMemory(memory_key="chat_history", input_key='question', output_key='answer', return_messages=True)
model = "meta-llama/Llama-3.3-70B-Instruct"
temperature = 0.1
max_tokens = 500
stats = str(get_usage(supabase))
def response_generator(query):
qa = None
add_usage(supabase, "chat", "prompt" + query, {"model": model, "temperature": temperature})
logger.info('Using HF model %s', model)
# print(st.session_state['max_tokens'])
endpoint_url = ("https://api-inference.huggingface.co/models/"+ model)
model_kwargs = {"temperature" : temperature,
"max_new_tokens" : max_tokens,
# "repetition_penalty" : 1.1,
"return_full_text" : False}
hf = HuggingFaceEndpoint(
endpoint_url=endpoint_url,
task="text-generation",
huggingfacehub_api_token=hf_api_key,
model_kwargs=model_kwargs
)
qa = ConversationalRetrievalChain.from_llm(hf, retriever=vector_store.as_retriever(search_kwargs={"score_threshold": 0.6, "k": 4,"filter": {"user": username}}), memory=memory, verbose=True, return_source_documents=True)
# Generate model's response
model_response = qa({"question": query})
logger.info('Result: %s', model_response["answer"])
sources = model_response["source_documents"]
logger.info('Sources: %s', model_response["source_documents"])
if len(sources) > 0:
response = model_response["answer"]
else:
response = "I am sorry, I do not have enough information to provide an answer. If there is a public source of data that you would like to add, please email [email protected]."
return response
# Set the theme
st.set_page_config(
page_title="Securade.ai - Safety Copilot",
page_icon="https://securade.ai/favicon.ico",
layout="centered",
initial_sidebar_state="collapsed",
menu_items={
"About": "# Securade.ai Safety Copilot v0.1\n [https://securade.ai](https://securade.ai)",
"Get Help" : "https://securade.ai",
"Report a Bug": "mailto:[email protected]"
}
)
st.title("👷‍♂️ Safety Copilot 🦺")
st.markdown("Chat with your personal safety assistant about any health & safety related queries.")
# st.markdown("Up-to-date with latest OSH regulations for Singapore, Indonesia, Malaysia & other parts of Asia.")
st.markdown("_"+ stats + " queries answered!_")
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
# Display chat messages from history on app rerun
for message in st.session_state.chat_history:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("Ask a question"):
# print(prompt)
# Add user message to chat history
st.session_state.chat_history.append({"role": "user", "content": prompt})
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
with st.spinner('Safety briefing in progress...'):
response = response_generator(prompt)
# Display assistant response in chat message container
with st.chat_message("assistant"):
st.markdown(response)
# Add assistant response to chat history
# print(response)
st.session_state.chat_history.append({"role": "assistant", "content": response})
# query = st.text_area("## Ask a question (" + stats + " queries answered so far)", max_chars=500)
# columns = st.columns(2)
# with columns[0]:
# button = st.button("Ask")
# with columns[1]:
# clear_history = st.button("Clear History", type='secondary')
# st.markdown("---\n\n")
# if clear_history:
# # Clear memory in Langchain
# memory.clear()
# st.session_state['chat_history'] = []
# st.experimental_rerun()