Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from gradio_litmodel3d import LitModel3D | |
import os | |
import shutil | |
os.environ['SPCONV_ALGO'] = 'native' | |
from typing import * | |
import torch | |
import numpy as np | |
import imageio | |
from easydict import EasyDict as edict | |
from PIL import Image | |
from trellis.pipelines import TrellisImageTo3DPipeline | |
from trellis.representations import Gaussian, MeshExtractResult | |
from trellis.utils import render_utils, postprocessing_utils | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
os.makedirs(TMP_DIR, exist_ok=True) | |
def start_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
os.makedirs(user_dir, exist_ok=True) | |
def end_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
shutil.rmtree(user_dir) | |
def preprocess_image(image: Image.Image) -> Image.Image: | |
processed_image = pipeline.preprocess_image(image) | |
return processed_image | |
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: | |
return { | |
'gaussian': { | |
**gs.init_params, | |
'_xyz': gs._xyz.cpu().numpy(), | |
'_features_dc': gs._features_dc.cpu().numpy(), | |
'_scaling': gs._scaling.cpu().numpy(), | |
'_rotation': gs._rotation.cpu().numpy(), | |
'_opacity': gs._opacity.cpu().numpy(), | |
}, | |
'mesh': { | |
'vertices': mesh.vertices.cpu().numpy(), | |
'faces': mesh.faces.cpu().numpy(), | |
}, | |
} | |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: | |
gs = Gaussian( | |
aabb=state['gaussian']['aabb'], | |
sh_degree=state['gaussian']['sh_degree'], | |
mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
scaling_bias=state['gaussian']['scaling_bias'], | |
opacity_bias=state['gaussian']['opacity_bias'], | |
scaling_activation=state['gaussian']['scaling_activation'], | |
) | |
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
mesh = edict( | |
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
) | |
return gs, mesh | |
def get_seed(randomize_seed: bool, seed: int) -> int: | |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed | |
def image_to_3d( | |
image: Image.Image, | |
seed: int, | |
ss_guidance_strength: float, | |
ss_sampling_steps: int, | |
slat_guidance_strength: float, | |
slat_sampling_steps: int, | |
req: gr.Request, | |
) -> Tuple[dict, str]: | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
outputs = pipeline.run( | |
image, | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
preprocess_image=False, | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
) | |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
video_path = os.path.join(user_dir, 'sample.mp4') | |
imageio.mimsave(video_path, video, fps=15) | |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) | |
torch.cuda.empty_cache() | |
return state, video_path | |
def extract_glb( | |
state: dict, | |
mesh_simplify: float, | |
texture_size: int, | |
req: gr.Request, | |
) -> Tuple[str, str]: | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
gs, mesh = unpack_state(state) | |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
glb_path = os.path.join(user_dir, 'sample.glb') | |
glb.export(glb_path) | |
torch.cuda.empty_cache() | |
return glb_path, glb_path | |
def split_image(image: Image.Image) -> List[Image.Image]: | |
image = np.array(image) | |
alpha = image[..., 3] | |
alpha = np.any(alpha>0, axis=0) | |
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist() | |
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist() | |
images = [] | |
for s, e in zip(start_pos, end_pos): | |
images.append(Image.fromarray(image[:, s:e+1])) | |
return [preprocess_image(image) for image in images] | |
with gr.Blocks(delete_cache=(600, 600)) as demo: | |
gr.Markdown(""" | |
# UTPL - Conversión de Imágen a objetos 3D usando IA | |
### Tesis: *"Objetos tridimensionales creados por IA: Innovación en entornos virtuales"* | |
**Autor:** Carlos Vargas | |
**Base técnica:** Adaptación de [TRELLIS](https://trellis3d.github.io/) (herramienta de código abierto para generación 3D) | |
**Propósito educativo:** Demostraciones académicas e Investigación en modelado 3D automático | |
""") | |
with gr.Row(equal_height=False): | |
# Left column (Controls) | |
with gr.Column(scale=2, min_width=400): | |
with gr.Tabs(): | |
with gr.Tab(label="Input Image"): | |
image_prompt = gr.Image( | |
label="Image Prompt", | |
format="png", | |
image_mode="RGBA", | |
type="pil", | |
height=300, | |
show_label=False | |
) | |
with gr.Accordion(".Generation Settings", open=False): | |
with gr.Column(variant="panel"): | |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
with gr.Group(): | |
gr.Markdown("#### Stage 1: Structure") | |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance", value=7.5, step=0.1) | |
ss_sampling_steps = gr.Slider(1, 50, label="Steps", value=12, step=1) | |
with gr.Group(): | |
gr.Markdown("#### Stage 2: Detail") | |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance", value=3.0, step=0.1) | |
slat_sampling_steps = gr.Slider(1, 50, label="Steps", value=12, step=1) | |
generate_btn = gr.Button("Generate 3D Asset", variant="primary", size="lg") | |
with gr.Accordion("GLB Export Settings", open=False): | |
with gr.Column(variant="panel"): | |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify Mesh", value=0.95, step=0.01) | |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
extract_glb_btn = gr.Button("Export GLB", interactive=False, size="lg") | |
# Right column (Outputs) | |
with gr.Column(scale=3, min_width=600): | |
with gr.Group(): | |
video_output = gr.Video( | |
label="3D Preview", | |
autoplay=True, | |
loop=True, | |
height=300, | |
show_label=False | |
) | |
model_output = LitModel3D( | |
label="3D Model Viewer", | |
exposure=10.0, | |
height=400 | |
) | |
with gr.Row(): | |
download_glb = gr.DownloadButton( | |
label="Download GLB File", | |
interactive=False, | |
variant="secondary", | |
size="lg" | |
) | |
output_buf = gr.State() | |
demo.load(start_session) | |
demo.unload(end_session) | |
image_prompt.upload( | |
preprocess_image, | |
inputs=[image_prompt], | |
outputs=[image_prompt], | |
) | |
generate_btn.click( | |
get_seed, | |
inputs=[randomize_seed, seed], | |
outputs=[seed], | |
).then( | |
image_to_3d, | |
inputs=[image_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps], | |
outputs=[output_buf, video_output], | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[extract_glb_btn], | |
) | |
video_output.clear( | |
lambda: gr.Button(interactive=False), | |
outputs=[extract_glb_btn], | |
) | |
extract_glb_btn.click( | |
extract_glb, | |
inputs=[output_buf, mesh_simplify, texture_size], | |
outputs=[model_output, download_glb], | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_glb], | |
) | |
model_output.clear( | |
lambda: gr.Button(interactive=False), | |
outputs=[download_glb], | |
) | |
if __name__ == "__main__": | |
pipeline = TrellisImageTo3DPipeline.from_pretrained("cavargas10/TRELLIS") | |
pipeline.cuda() | |
try: | |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg | |
except: | |
pass | |
demo.launch() |