carlosdimare commited on
Commit
75f3165
verified
1 Parent(s): 381f2ee

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -46
app.py CHANGED
@@ -1,64 +1,67 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
19
 
 
 
 
 
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ import requests
4
 
5
+ # Configura tu cliente de modelo de Hugging Face
 
 
6
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
7
 
8
+ # Tu clave de API de Google Custom Search
9
+ GOOGLE_API_KEY = "AIzaSyDI48Q_Ez8-KXQ6Dfe_r7JyOkk-dloER0I"
10
+ # Tu ID de motor de b煤squeda
11
+ SEARCH_ENGINE_ID = "030a88810b398467c"
12
 
13
+ def web_search(query):
14
+ # Realiza la b煤squeda en Google
15
+ url = f"https://www.googleapis.com/customsearch/v1?q={query}&key={GOOGLE_API_KEY}&cx={SEARCH_ENGINE_ID}"
16
+ response = requests.get(url)
17
+ results = response.json()
18
+
19
+ # Devuelve un resumen de los primeros resultados
20
+ search_results = []
21
+ for item in results.get("items", []):
22
+ title = item.get("title", "No title")
23
+ link = item.get("link", "")
24
+ snippet = item.get("snippet", "")
25
+ search_results.append(f"{title}: {snippet} ({link})")
26
+ return "\n".join(search_results) # Devuelve los resultados como texto
27
 
28
+ # Define la funci贸n del chatbot con navegaci贸n web
29
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
30
+ # Prepara el contexto de la conversaci贸n para el modelo
31
+ messages = [{"role": "system", "content": system_message}]
32
  for val in history:
33
  if val[0]:
34
  messages.append({"role": "user", "content": val[0]})
35
  if val[1]:
36
  messages.append({"role": "assistant", "content": val[1]})
37
 
38
+ # Realiza la b煤squeda en la web
39
+ search_summary = web_search(message)
40
+
41
+ # Incluye los resultados de la b煤squeda en el contexto para el modelo
42
+ messages.append({"role": "system", "content": f"Search results:\n{search_summary}"})
43
+
44
+ # Genera la respuesta del modelo
45
+ response = client.text_completion(
46
+ prompt=message, max_tokens=max_tokens, temperature=temperature, top_p=top_p
47
+ )
 
 
48
 
49
+ return response
 
50
 
51
+ # Interfaz de Gradio
52
+ with gr.Blocks() as demo:
53
+ chatbot = gr.Chatbot()
54
+ msg = gr.Textbox()
55
+ clear = gr.Button("Clear")
56
 
57
+ def chat_interface(user_message, history=[]):
58
+ output = respond(
59
+ user_message, history, "You are a helpful assistant.", 200, 0.7, 0.9
60
+ )
61
+ history.append((user_message, output))
62
+ return history, chatbot.update(history)
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
+ msg.submit(chat_interface, inputs=[msg, chatbot], outputs=[chatbot, chatbot])
65
+ clear.click(lambda: [], None, chatbot)
66
 
67
+ demo.launch()