Spaces:
Running
Running
File size: 9,641 Bytes
6f46aeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import os
from datetime import datetime
import random
import gradio as gr
from datasets import load_dataset, Dataset, DatasetDict
from huggingface_hub import whoami, InferenceClient
# Initialize the inference client
client = InferenceClient(
api_key=os.getenv("HF_API_KEY"), # Make sure to set this environment variable
)
# Load questions from Hugging Face dataset
EXAM_MAX_QUESTIONS = os.getenv("EXAM_MAX_QUESTIONS") or 5 # We have 5 questions total
EXAM_PASSING_SCORE = os.getenv("EXAM_PASSING_SCORE") or 0.0
EXAM_DATASET_ID = "agents-course/dummy-code-quiz"
# prep the dataset for the quiz
ds = load_dataset(EXAM_DATASET_ID, split="train")
quiz_data = ds.to_list()
random.shuffle(quiz_data)
def check_code(user_code, solution, challenge):
"""
Use LLM to evaluate if the user's code solution is correct.
Returns True if the solution is correct, False otherwise.
"""
prompt = f"""You are an expert Python programming instructor evaluating a student's code solution.
Challenge:
{challenge}
Reference Solution:
{solution}
Student's Solution:
{user_code}
Evaluate if the student's solution is functionally equivalent to the reference solution.
Consider:
1. Does it solve the problem correctly?
2. Does it handle edge cases appropriately?
3. Does it follow the requirements of the challenge?
Respond with ONLY "CORRECT" or "INCORRECT" followed by a brief explanation.
"""
messages = [{"role": "user", "content": prompt}]
try:
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-Coder-32B-Instruct",
messages=messages,
max_tokens=500,
)
response = completion.choices[0].message.content.strip()
# Extract the verdict from the response
is_correct = response.upper().startswith("CORRECT")
# Add the explanation to the status text
explanation = response.split("\n", 1)[1] if "\n" in response else ""
gr.Info(explanation)
return is_correct
except Exception as e:
gr.Warning(f"Error checking code: {str(e)}")
# Fall back to simple string comparison if LLM fails
return user_code.strip() == solution.strip()
def on_user_logged_in(token: gr.OAuthToken | None):
"""Handle user login state"""
if token is not None:
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=True), gr.update(visible=False)
def push_results_to_hub(
user_answers: list, token: gr.OAuthToken | None, signed_in_message: str
):
"""Push results to Hugging Face Hub."""
print(f"signed_in_message: {signed_in_message}")
if not user_answers: # Check if there are any answers to submit
gr.Warning("No answers to submit!")
return "No answers to submit!"
if token is None:
gr.Warning("Please log in to Hugging Face before pushing!")
return "Please log in to Hugging Face before pushing!"
# Calculate grade
correct_count = sum(1 for answer in user_answers if answer["is_correct"])
total_questions = len(user_answers)
grade = correct_count / total_questions if total_questions > 0 else 0
if grade < float(EXAM_PASSING_SCORE):
gr.Warning(
f"Score {grade:.1%} below passing threshold of {float(EXAM_PASSING_SCORE):.1%}"
)
return f"You scored {grade:.1%}. Please try again to achieve at least {float(EXAM_PASSING_SCORE):.1%}"
gr.Info("Submitting answers to the Hub. Please wait...", duration=2)
user_info = whoami(token=token.token)
username = user_info["name"]
repo_id = f"{EXAM_DATASET_ID}_responses"
submission_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Create a dataset with the user's answers and metadata
submission_data = [
{
"username": username,
"datetime": submission_time,
"grade": grade,
**answer, # Include all answer data
}
for answer in user_answers
]
try:
# Try to load existing dataset
existing_ds = load_dataset(repo_id)
# Convert to DatasetDict if it isn't already
if not isinstance(existing_ds, dict):
existing_ds = DatasetDict({"default": existing_ds})
except Exception:
# If dataset doesn't exist, create empty DatasetDict
existing_ds = DatasetDict()
# Create new dataset from submission
new_ds = Dataset.from_list(submission_data)
# Add or update the split for this user
existing_ds[username] = new_ds
# Push the updated dataset to the Hub
existing_ds.push_to_hub(
repo_id,
private=True, # Make it private by default since it contains student submissions
)
return f"Your responses have been submitted to the Hub! Final grade: {grade:.1%}"
def handle_quiz(question_idx, user_answers, submitted_code, is_start):
"""Handle quiz state and progression"""
# Hide the start button once the first question is shown
start_btn_update = gr.update(visible=False) if is_start else None
# If this is the first time (start=True), begin at question_idx=0
if is_start:
question_idx = 0
else:
# If not the first question and there's a submission, store the user's last submission
if (
question_idx < len(quiz_data) and submitted_code.strip()
): # Only check if there's code
current_q = quiz_data[question_idx]
is_correct = check_code(
submitted_code, current_q["solution"], current_q["challenge"]
)
user_answers.append(
{
"challenge": current_q["challenge"],
"submitted_code": submitted_code,
"correct_solution": current_q["solution"],
"is_correct": is_correct,
}
)
question_idx += 1
# If we've reached the end, show final results
if question_idx >= len(quiz_data):
correct_count = sum(1 for answer in user_answers if answer["is_correct"])
grade = correct_count / len(user_answers)
results_text = (
f"**Quiz Complete!**\n\n"
f"Your score: {grade:.1%}\n"
f"Passing score: {float(EXAM_PASSING_SCORE):.1%}\n\n"
f"Your answers:\n\n"
)
for idx, answer in enumerate(user_answers):
results_text += (
f"Question {idx + 1}: {'β
' if answer['is_correct'] else 'β'}\n"
)
results_text += (
f"Your code:\n```python\n{answer['submitted_code']}\n```\n\n"
)
return (
"", # question_text becomes blank
gr.update(value="", visible=False), # clear and hide code input
f"{'β
Passed!' if grade >= float(EXAM_PASSING_SCORE) else 'β Did not pass'}",
question_idx,
user_answers,
start_btn_update,
gr.update(value=results_text, visible=True), # show final_markdown
)
else:
# Show the next question
q = quiz_data[question_idx]
challenge_text = f"## Question {question_idx + 1} \n### {q['challenge']}"
return (
challenge_text,
gr.update(value=q["placeholder"], visible=True),
"Submit your code solution and click 'Next' to continue.",
question_idx,
user_answers,
start_btn_update,
gr.update(visible=False), # Hide final_markdown
)
with gr.Blocks() as demo:
demo.title = f"Coding Quiz: {EXAM_DATASET_ID}"
# State variables
question_idx = gr.State(value=0)
user_answers = gr.State(value=[])
with gr.Row(variant="compact"):
gr.Markdown(f"## Welcome to the {EXAM_DATASET_ID} Quiz")
with gr.Row(variant="compact"):
gr.Markdown(
"Log in first, then click 'Start' to begin. Complete each coding challenge, click 'Next', "
"and finally click 'Submit' to publish your results to the Hugging Face Hub."
)
with gr.Row(variant="panel"):
question_text = gr.Markdown("")
code_input = gr.Code(language="python", label="Your Solution", visible=False)
with gr.Row(variant="compact"):
status_text = gr.Markdown("")
with gr.Row(variant="compact"):
final_markdown = gr.Markdown("", visible=False)
next_btn = gr.Button("Next βοΈ")
submit_btn = gr.Button("Submit β
")
with gr.Row(variant="compact"):
login_btn = gr.LoginButton()
start_btn = gr.Button("Start", visible=False)
login_btn.click(fn=on_user_logged_in, inputs=None, outputs=[login_btn, start_btn])
start_btn.click(
fn=handle_quiz,
inputs=[question_idx, user_answers, code_input, gr.State(True)],
outputs=[
question_text,
code_input,
status_text,
question_idx,
user_answers,
start_btn,
final_markdown,
],
)
next_btn.click(
fn=handle_quiz,
inputs=[question_idx, user_answers, code_input, gr.State(False)],
outputs=[
question_text,
code_input,
status_text,
question_idx,
user_answers,
start_btn,
final_markdown,
],
)
submit_btn.click(
fn=push_results_to_hub,
inputs=[user_answers, login_btn],
outputs=status_text,
)
if __name__ == "__main__":
demo.launch()
|