File size: 9,641 Bytes
6f46aeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import os
from datetime import datetime
import random

import gradio as gr
from datasets import load_dataset, Dataset, DatasetDict
from huggingface_hub import whoami, InferenceClient

# Initialize the inference client
client = InferenceClient(
    api_key=os.getenv("HF_API_KEY"),  # Make sure to set this environment variable
)

# Load questions from Hugging Face dataset
EXAM_MAX_QUESTIONS = os.getenv("EXAM_MAX_QUESTIONS") or 5  # We have 5 questions total
EXAM_PASSING_SCORE = os.getenv("EXAM_PASSING_SCORE") or 0.0
EXAM_DATASET_ID = "agents-course/dummy-code-quiz"

# prep the dataset for the quiz
ds = load_dataset(EXAM_DATASET_ID, split="train")
quiz_data = ds.to_list()
random.shuffle(quiz_data)

def check_code(user_code, solution, challenge):
    """
    Use LLM to evaluate if the user's code solution is correct.
    Returns True if the solution is correct, False otherwise.
    """
    prompt = f"""You are an expert Python programming instructor evaluating a student's code solution.

    Challenge:
    {challenge}

    Reference Solution:
    {solution}
    
    Student's Solution:
    {user_code}
    
    Evaluate if the student's solution is functionally equivalent to the reference solution.
    Consider:
    1. Does it solve the problem correctly?
    2. Does it handle edge cases appropriately?
    3. Does it follow the requirements of the challenge?

    Respond with ONLY "CORRECT" or "INCORRECT" followed by a brief explanation.
    """

    messages = [{"role": "user", "content": prompt}]

    try:
        completion = client.chat.completions.create(
            model="Qwen/Qwen2.5-Coder-32B-Instruct",
            messages=messages,
            max_tokens=500,
        )

        response = completion.choices[0].message.content.strip()

        # Extract the verdict from the response
        is_correct = response.upper().startswith("CORRECT")

        # Add the explanation to the status text
        explanation = response.split("\n", 1)[1] if "\n" in response else ""
        gr.Info(explanation)

        return is_correct

    except Exception as e:
        gr.Warning(f"Error checking code: {str(e)}")
        # Fall back to simple string comparison if LLM fails
        return user_code.strip() == solution.strip()


def on_user_logged_in(token: gr.OAuthToken | None):
    """Handle user login state"""
    if token is not None:
        return gr.update(visible=False), gr.update(visible=True)
    else:
        return gr.update(visible=True), gr.update(visible=False)


def push_results_to_hub(
    user_answers: list, token: gr.OAuthToken | None, signed_in_message: str
):
    """Push results to Hugging Face Hub."""

    print(f"signed_in_message: {signed_in_message}")

    if not user_answers:  # Check if there are any answers to submit
        gr.Warning("No answers to submit!")
        return "No answers to submit!"

    if token is None:
        gr.Warning("Please log in to Hugging Face before pushing!")
        return "Please log in to Hugging Face before pushing!"

    # Calculate grade
    correct_count = sum(1 for answer in user_answers if answer["is_correct"])
    total_questions = len(user_answers)
    grade = correct_count / total_questions if total_questions > 0 else 0

    if grade < float(EXAM_PASSING_SCORE):
        gr.Warning(
            f"Score {grade:.1%} below passing threshold of {float(EXAM_PASSING_SCORE):.1%}"
        )
        return f"You scored {grade:.1%}. Please try again to achieve at least {float(EXAM_PASSING_SCORE):.1%}"

    gr.Info("Submitting answers to the Hub. Please wait...", duration=2)

    user_info = whoami(token=token.token)
    username = user_info["name"]
    repo_id = f"{EXAM_DATASET_ID}_responses"
    submission_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

    # Create a dataset with the user's answers and metadata
    submission_data = [
        {
            "username": username,
            "datetime": submission_time,
            "grade": grade,
            **answer,  # Include all answer data
        }
        for answer in user_answers
    ]

    try:
        # Try to load existing dataset
        existing_ds = load_dataset(repo_id)
        # Convert to DatasetDict if it isn't already
        if not isinstance(existing_ds, dict):
            existing_ds = DatasetDict({"default": existing_ds})
    except Exception:
        # If dataset doesn't exist, create empty DatasetDict
        existing_ds = DatasetDict()

    # Create new dataset from submission
    new_ds = Dataset.from_list(submission_data)

    # Add or update the split for this user
    existing_ds[username] = new_ds

    # Push the updated dataset to the Hub
    existing_ds.push_to_hub(
        repo_id,
        private=True,  # Make it private by default since it contains student submissions
    )

    return f"Your responses have been submitted to the Hub! Final grade: {grade:.1%}"


def handle_quiz(question_idx, user_answers, submitted_code, is_start):
    """Handle quiz state and progression"""
    # Hide the start button once the first question is shown
    start_btn_update = gr.update(visible=False) if is_start else None

    # If this is the first time (start=True), begin at question_idx=0
    if is_start:
        question_idx = 0
    else:
        # If not the first question and there's a submission, store the user's last submission
        if (
            question_idx < len(quiz_data) and submitted_code.strip()
        ):  # Only check if there's code
            current_q = quiz_data[question_idx]
            is_correct = check_code(
                submitted_code, current_q["solution"], current_q["challenge"]
            )
            user_answers.append(
                {
                    "challenge": current_q["challenge"],
                    "submitted_code": submitted_code,
                    "correct_solution": current_q["solution"],
                    "is_correct": is_correct,
                }
            )
        question_idx += 1

    # If we've reached the end, show final results
    if question_idx >= len(quiz_data):
        correct_count = sum(1 for answer in user_answers if answer["is_correct"])
        grade = correct_count / len(user_answers)
        results_text = (
            f"**Quiz Complete!**\n\n"
            f"Your score: {grade:.1%}\n"
            f"Passing score: {float(EXAM_PASSING_SCORE):.1%}\n\n"
            f"Your answers:\n\n"
        )
        for idx, answer in enumerate(user_answers):
            results_text += (
                f"Question {idx + 1}: {'βœ…' if answer['is_correct'] else '❌'}\n"
            )
            results_text += (
                f"Your code:\n```python\n{answer['submitted_code']}\n```\n\n"
            )

        return (
            "",  # question_text becomes blank
            gr.update(value="", visible=False),  # clear and hide code input
            f"{'βœ… Passed!' if grade >= float(EXAM_PASSING_SCORE) else '❌ Did not pass'}",
            question_idx,
            user_answers,
            start_btn_update,
            gr.update(value=results_text, visible=True),  # show final_markdown
        )
    else:
        # Show the next question
        q = quiz_data[question_idx]
        challenge_text = f"## Question {question_idx + 1} \n### {q['challenge']}"
        return (
            challenge_text,
            gr.update(value=q["placeholder"], visible=True),
            "Submit your code solution and click 'Next' to continue.",
            question_idx,
            user_answers,
            start_btn_update,
            gr.update(visible=False),  # Hide final_markdown
        )


with gr.Blocks() as demo:
    demo.title = f"Coding Quiz: {EXAM_DATASET_ID}"
    # State variables
    question_idx = gr.State(value=0)
    user_answers = gr.State(value=[])

    with gr.Row(variant="compact"):
        gr.Markdown(f"## Welcome to the {EXAM_DATASET_ID} Quiz")
    with gr.Row(variant="compact"):
        gr.Markdown(
            "Log in first, then click 'Start' to begin. Complete each coding challenge, click 'Next', "
            "and finally click 'Submit' to publish your results to the Hugging Face Hub."
        )

    with gr.Row(variant="panel"):
        question_text = gr.Markdown("")
        code_input = gr.Code(language="python", label="Your Solution", visible=False)

    with gr.Row(variant="compact"):
        status_text = gr.Markdown("")

    with gr.Row(variant="compact"):
        final_markdown = gr.Markdown("", visible=False)

        next_btn = gr.Button("Next ⏭️")
        submit_btn = gr.Button("Submit βœ…")

    with gr.Row(variant="compact"):
        login_btn = gr.LoginButton()
        start_btn = gr.Button("Start", visible=False)

    login_btn.click(fn=on_user_logged_in, inputs=None, outputs=[login_btn, start_btn])

    start_btn.click(
        fn=handle_quiz,
        inputs=[question_idx, user_answers, code_input, gr.State(True)],
        outputs=[
            question_text,
            code_input,
            status_text,
            question_idx,
            user_answers,
            start_btn,
            final_markdown,
        ],
    )

    next_btn.click(
        fn=handle_quiz,
        inputs=[question_idx, user_answers, code_input, gr.State(False)],
        outputs=[
            question_text,
            code_input,
            status_text,
            question_idx,
            user_answers,
            start_btn,
            final_markdown,
        ],
    )

    submit_btn.click(
        fn=push_results_to_hub,
        inputs=[user_answers, login_btn],
        outputs=status_text,
    )


if __name__ == "__main__":
    demo.launch()