Spaces:
Running
on
Zero
Running
on
Zero
Upload 2 files
Browse files- replace_bg/model/controlnet.py +18 -17
- replace_bg/model/pipeline_controlnet_sd_xl.py +275 -139
replace_bg/model/controlnet.py
CHANGED
@@ -19,7 +19,7 @@ from torch import nn
|
|
19 |
from torch.nn import functional as F
|
20 |
|
21 |
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
-
from diffusers.loaders import
|
23 |
from diffusers.utils import BaseOutput, logging
|
24 |
from diffusers.models.attention_processor import (
|
25 |
ADDED_KV_ATTENTION_PROCESSORS,
|
@@ -54,7 +54,7 @@ class ControlNetOutput(BaseOutput):
|
|
54 |
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
55 |
used to condition the original UNet's downsampling activations.
|
56 |
mid_down_block_re_sample (`torch.Tensor`):
|
57 |
-
The activation of the
|
58 |
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
|
59 |
Output can be used to condition the original UNet's middle block activation.
|
60 |
"""
|
@@ -76,12 +76,12 @@ class ControlNetConditioningEmbedding(nn.Module):
|
|
76 |
def __init__(
|
77 |
self,
|
78 |
conditioning_embedding_channels: int,
|
79 |
-
conditioning_channels: int = 5, #update to 5
|
80 |
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
81 |
):
|
82 |
super().__init__()
|
83 |
|
84 |
-
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
85 |
|
86 |
self.blocks = nn.ModuleList([])
|
87 |
|
@@ -89,7 +89,7 @@ class ControlNetConditioningEmbedding(nn.Module):
|
|
89 |
channel_in = block_out_channels[i]
|
90 |
channel_out = block_out_channels[i + 1]
|
91 |
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
|
92 |
-
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=1))
|
93 |
|
94 |
self.conv_out = zero_module(
|
95 |
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
@@ -108,7 +108,7 @@ class ControlNetConditioningEmbedding(nn.Module):
|
|
108 |
return embedding
|
109 |
|
110 |
|
111 |
-
class ControlNetModel(ModelMixin, ConfigMixin,
|
112 |
"""
|
113 |
A ControlNet model.
|
114 |
|
@@ -530,7 +530,7 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
|
530 |
|
531 |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
532 |
if hasattr(module, "get_processor"):
|
533 |
-
processors[f"{name}.processor"] = module.get_processor(
|
534 |
|
535 |
for sub_name, child in module.named_children():
|
536 |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
@@ -665,10 +665,10 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
|
665 |
|
666 |
def forward(
|
667 |
self,
|
668 |
-
sample: torch.
|
669 |
timestep: Union[torch.Tensor, float, int],
|
670 |
encoder_hidden_states: torch.Tensor,
|
671 |
-
controlnet_cond: torch.
|
672 |
conditioning_scale: float = 1.0,
|
673 |
class_labels: Optional[torch.Tensor] = None,
|
674 |
timestep_cond: Optional[torch.Tensor] = None,
|
@@ -677,18 +677,18 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
|
677 |
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
678 |
guess_mode: bool = False,
|
679 |
return_dict: bool = True,
|
680 |
-
) -> Union[ControlNetOutput, Tuple[Tuple[torch.
|
681 |
"""
|
682 |
The [`ControlNetModel`] forward method.
|
683 |
|
684 |
Args:
|
685 |
-
sample (`torch.
|
686 |
The noisy input tensor.
|
687 |
timestep (`Union[torch.Tensor, float, int]`):
|
688 |
The number of timesteps to denoise an input.
|
689 |
encoder_hidden_states (`torch.Tensor`):
|
690 |
The encoder hidden states.
|
691 |
-
controlnet_cond (`torch.
|
692 |
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
693 |
conditioning_scale (`float`, defaults to `1.0`):
|
694 |
The scale factor for ControlNet outputs.
|
@@ -710,12 +710,13 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
|
710 |
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
|
711 |
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
|
712 |
return_dict (`bool`, defaults to `True`):
|
713 |
-
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain
|
|
|
714 |
|
715 |
Returns:
|
716 |
-
[`~models.controlnet.ControlNetOutput`] **or** `tuple`:
|
717 |
-
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned,
|
718 |
-
returned where the first element is the sample tensor.
|
719 |
"""
|
720 |
# check channel order
|
721 |
channel_order = self.config.controlnet_conditioning_channel_order
|
@@ -868,4 +869,4 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
|
868 |
def zero_module(module):
|
869 |
for p in module.parameters():
|
870 |
nn.init.zeros_(p)
|
871 |
-
return module
|
|
|
19 |
from torch.nn import functional as F
|
20 |
|
21 |
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders.single_file_model import FromOriginalModelMixin
|
23 |
from diffusers.utils import BaseOutput, logging
|
24 |
from diffusers.models.attention_processor import (
|
25 |
ADDED_KV_ATTENTION_PROCESSORS,
|
|
|
54 |
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
55 |
used to condition the original UNet's downsampling activations.
|
56 |
mid_down_block_re_sample (`torch.Tensor`):
|
57 |
+
The activation of the middle block (the lowest sample resolution). Each tensor should be of shape
|
58 |
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
|
59 |
Output can be used to condition the original UNet's middle block activation.
|
60 |
"""
|
|
|
76 |
def __init__(
|
77 |
self,
|
78 |
conditioning_embedding_channels: int,
|
79 |
+
conditioning_channels: int = 5, # Bria: update to 5
|
80 |
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
81 |
):
|
82 |
super().__init__()
|
83 |
|
84 |
+
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
85 |
|
86 |
self.blocks = nn.ModuleList([])
|
87 |
|
|
|
89 |
channel_in = block_out_channels[i]
|
90 |
channel_out = block_out_channels[i + 1]
|
91 |
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
|
92 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=1)) # Bria: update stride to 1
|
93 |
|
94 |
self.conv_out = zero_module(
|
95 |
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
|
|
108 |
return embedding
|
109 |
|
110 |
|
111 |
+
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
112 |
"""
|
113 |
A ControlNet model.
|
114 |
|
|
|
530 |
|
531 |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
532 |
if hasattr(module, "get_processor"):
|
533 |
+
processors[f"{name}.processor"] = module.get_processor()
|
534 |
|
535 |
for sub_name, child in module.named_children():
|
536 |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
|
|
665 |
|
666 |
def forward(
|
667 |
self,
|
668 |
+
sample: torch.Tensor,
|
669 |
timestep: Union[torch.Tensor, float, int],
|
670 |
encoder_hidden_states: torch.Tensor,
|
671 |
+
controlnet_cond: torch.Tensor,
|
672 |
conditioning_scale: float = 1.0,
|
673 |
class_labels: Optional[torch.Tensor] = None,
|
674 |
timestep_cond: Optional[torch.Tensor] = None,
|
|
|
677 |
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
678 |
guess_mode: bool = False,
|
679 |
return_dict: bool = True,
|
680 |
+
) -> Union[ControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]:
|
681 |
"""
|
682 |
The [`ControlNetModel`] forward method.
|
683 |
|
684 |
Args:
|
685 |
+
sample (`torch.Tensor`):
|
686 |
The noisy input tensor.
|
687 |
timestep (`Union[torch.Tensor, float, int]`):
|
688 |
The number of timesteps to denoise an input.
|
689 |
encoder_hidden_states (`torch.Tensor`):
|
690 |
The encoder hidden states.
|
691 |
+
controlnet_cond (`torch.Tensor`):
|
692 |
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
693 |
conditioning_scale (`float`, defaults to `1.0`):
|
694 |
The scale factor for ControlNet outputs.
|
|
|
710 |
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
|
711 |
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
|
712 |
return_dict (`bool`, defaults to `True`):
|
713 |
+
Whether or not to return a [`~models.controlnets.controlnet.ControlNetOutput`] instead of a plain
|
714 |
+
tuple.
|
715 |
|
716 |
Returns:
|
717 |
+
[`~models.controlnets.controlnet.ControlNetOutput`] **or** `tuple`:
|
718 |
+
If `return_dict` is `True`, a [`~models.controlnets.controlnet.ControlNetOutput`] is returned,
|
719 |
+
otherwise a tuple is returned where the first element is the sample tensor.
|
720 |
"""
|
721 |
# check channel order
|
722 |
channel_order = self.config.controlnet_conditioning_channel_order
|
|
|
869 |
def zero_module(module):
|
870 |
for p in module.parameters():
|
871 |
nn.init.zeros_(p)
|
872 |
+
return module
|
replace_bg/model/pipeline_controlnet_sd_xl.py
CHANGED
@@ -37,8 +37,8 @@ from diffusers.loaders import (
|
|
37 |
StableDiffusionXLLoraLoaderMixin,
|
38 |
TextualInversionLoaderMixin,
|
39 |
)
|
40 |
-
|
41 |
from .controlnet import ControlNetModel
|
|
|
42 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
43 |
from diffusers.models.attention_processor import (
|
44 |
AttnProcessor2_0,
|
@@ -57,9 +57,9 @@ from diffusers.utils import (
|
|
57 |
unscale_lora_layers,
|
58 |
)
|
59 |
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
|
60 |
-
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
61 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
62 |
-
|
63 |
|
64 |
if is_invisible_watermark_available():
|
65 |
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
@@ -116,8 +116,69 @@ EXAMPLE_DOC_STRING = """
|
|
116 |
"""
|
117 |
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
class StableDiffusionXLControlNetPipeline(
|
120 |
DiffusionPipeline,
|
|
|
121 |
TextualInversionLoaderMixin,
|
122 |
StableDiffusionXLLoraLoaderMixin,
|
123 |
IPAdapterMixin,
|
@@ -176,7 +237,16 @@ class StableDiffusionXLControlNetPipeline(
|
|
176 |
"feature_extractor",
|
177 |
"image_encoder",
|
178 |
]
|
179 |
-
_callback_tensor_inputs = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
def __init__(
|
182 |
self,
|
@@ -224,39 +294,6 @@ class StableDiffusionXLControlNetPipeline(
|
|
224 |
|
225 |
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
226 |
|
227 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
228 |
-
def enable_vae_slicing(self):
|
229 |
-
r"""
|
230 |
-
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
231 |
-
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
232 |
-
"""
|
233 |
-
self.vae.enable_slicing()
|
234 |
-
|
235 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
236 |
-
def disable_vae_slicing(self):
|
237 |
-
r"""
|
238 |
-
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
239 |
-
computing decoding in one step.
|
240 |
-
"""
|
241 |
-
self.vae.disable_slicing()
|
242 |
-
|
243 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
244 |
-
def enable_vae_tiling(self):
|
245 |
-
r"""
|
246 |
-
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
247 |
-
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
248 |
-
processing larger images.
|
249 |
-
"""
|
250 |
-
self.vae.enable_tiling()
|
251 |
-
|
252 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
253 |
-
def disable_vae_tiling(self):
|
254 |
-
r"""
|
255 |
-
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
256 |
-
computing decoding in one step.
|
257 |
-
"""
|
258 |
-
self.vae.disable_tiling()
|
259 |
-
|
260 |
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
261 |
def encode_prompt(
|
262 |
self,
|
@@ -267,10 +304,10 @@ class StableDiffusionXLControlNetPipeline(
|
|
267 |
do_classifier_free_guidance: bool = True,
|
268 |
negative_prompt: Optional[str] = None,
|
269 |
negative_prompt_2: Optional[str] = None,
|
270 |
-
prompt_embeds: Optional[torch.
|
271 |
-
negative_prompt_embeds: Optional[torch.
|
272 |
-
pooled_prompt_embeds: Optional[torch.
|
273 |
-
negative_pooled_prompt_embeds: Optional[torch.
|
274 |
lora_scale: Optional[float] = None,
|
275 |
clip_skip: Optional[int] = None,
|
276 |
):
|
@@ -296,17 +333,17 @@ class StableDiffusionXLControlNetPipeline(
|
|
296 |
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
297 |
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
298 |
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
299 |
-
prompt_embeds (`torch.
|
300 |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
301 |
provided, text embeddings will be generated from `prompt` input argument.
|
302 |
-
negative_prompt_embeds (`torch.
|
303 |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
304 |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
305 |
argument.
|
306 |
-
pooled_prompt_embeds (`torch.
|
307 |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
308 |
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
309 |
-
negative_pooled_prompt_embeds (`torch.
|
310 |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
311 |
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
312 |
input argument.
|
@@ -353,7 +390,7 @@ class StableDiffusionXLControlNetPipeline(
|
|
353 |
prompt_2 = prompt_2 or prompt
|
354 |
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
355 |
|
356 |
-
# textual inversion:
|
357 |
prompt_embeds_list = []
|
358 |
prompts = [prompt, prompt_2]
|
359 |
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
@@ -518,33 +555,50 @@ class StableDiffusionXLControlNetPipeline(
|
|
518 |
return image_embeds, uncond_image_embeds
|
519 |
|
520 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
521 |
-
def prepare_ip_adapter_image_embeds(
|
522 |
-
|
523 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
524 |
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
)
|
538 |
-
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
539 |
-
single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0)
|
540 |
|
541 |
-
|
542 |
-
|
543 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
544 |
|
545 |
-
|
|
|
546 |
|
547 |
-
return
|
548 |
|
549 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
550 |
def prepare_extra_step_kwargs(self, generator, eta):
|
@@ -575,6 +629,8 @@ class StableDiffusionXLControlNetPipeline(
|
|
575 |
prompt_embeds=None,
|
576 |
negative_prompt_embeds=None,
|
577 |
pooled_prompt_embeds=None,
|
|
|
|
|
578 |
negative_pooled_prompt_embeds=None,
|
579 |
controlnet_conditioning_scale=1.0,
|
580 |
control_guidance_start=0.0,
|
@@ -736,6 +792,21 @@ class StableDiffusionXLControlNetPipeline(
|
|
736 |
if end > 1.0:
|
737 |
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
738 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
739 |
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
|
740 |
def check_image(self, image, prompt, prompt_embeds):
|
741 |
image_is_pil = isinstance(image, PIL.Image.Image)
|
@@ -807,7 +878,12 @@ class StableDiffusionXLControlNetPipeline(
|
|
807 |
|
808 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
809 |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
810 |
-
shape = (
|
|
|
|
|
|
|
|
|
|
|
811 |
if isinstance(generator, list) and len(generator) != batch_size:
|
812 |
raise ValueError(
|
813 |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
@@ -851,8 +927,6 @@ class StableDiffusionXLControlNetPipeline(
|
|
851 |
(
|
852 |
AttnProcessor2_0,
|
853 |
XFormersAttnProcessor,
|
854 |
-
LoRAXFormersAttnProcessor,
|
855 |
-
LoRAAttnProcessor2_0,
|
856 |
),
|
857 |
)
|
858 |
# if xformers or torch_2_0 is used attention block does not need
|
@@ -862,49 +936,23 @@ class StableDiffusionXLControlNetPipeline(
|
|
862 |
self.vae.decoder.conv_in.to(dtype)
|
863 |
self.vae.decoder.mid_block.to(dtype)
|
864 |
|
865 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
|
866 |
-
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
867 |
-
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
868 |
-
|
869 |
-
The suffixes after the scaling factors represent the stages where they are being applied.
|
870 |
-
|
871 |
-
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
872 |
-
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
873 |
-
|
874 |
-
Args:
|
875 |
-
s1 (`float`):
|
876 |
-
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
877 |
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
878 |
-
s2 (`float`):
|
879 |
-
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
880 |
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
881 |
-
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
882 |
-
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
883 |
-
"""
|
884 |
-
if not hasattr(self, "unet"):
|
885 |
-
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
886 |
-
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
887 |
-
|
888 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
|
889 |
-
def disable_freeu(self):
|
890 |
-
"""Disables the FreeU mechanism if enabled."""
|
891 |
-
self.unet.disable_freeu()
|
892 |
-
|
893 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
894 |
-
def get_guidance_scale_embedding(
|
|
|
|
|
895 |
"""
|
896 |
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
897 |
|
898 |
Args:
|
899 |
-
|
900 |
-
|
901 |
embedding_dim (`int`, *optional*, defaults to 512):
|
902 |
-
|
903 |
-
dtype:
|
904 |
-
|
905 |
|
906 |
Returns:
|
907 |
-
`torch.
|
908 |
"""
|
909 |
assert len(w.shape) == 1
|
910 |
w = w * 1000.0
|
@@ -938,10 +986,18 @@ class StableDiffusionXLControlNetPipeline(
|
|
938 |
def cross_attention_kwargs(self):
|
939 |
return self._cross_attention_kwargs
|
940 |
|
|
|
|
|
|
|
|
|
941 |
@property
|
942 |
def num_timesteps(self):
|
943 |
return self._num_timesteps
|
944 |
|
|
|
|
|
|
|
|
|
945 |
@torch.no_grad()
|
946 |
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
947 |
def __call__(
|
@@ -952,18 +1008,22 @@ class StableDiffusionXLControlNetPipeline(
|
|
952 |
height: Optional[int] = None,
|
953 |
width: Optional[int] = None,
|
954 |
num_inference_steps: int = 50,
|
|
|
|
|
|
|
955 |
guidance_scale: float = 5.0,
|
956 |
negative_prompt: Optional[Union[str, List[str]]] = None,
|
957 |
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
958 |
num_images_per_prompt: Optional[int] = 1,
|
959 |
eta: float = 0.0,
|
960 |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
961 |
-
latents: Optional[torch.
|
962 |
-
prompt_embeds: Optional[torch.
|
963 |
-
negative_prompt_embeds: Optional[torch.
|
964 |
-
pooled_prompt_embeds: Optional[torch.
|
965 |
-
negative_pooled_prompt_embeds: Optional[torch.
|
966 |
ip_adapter_image: Optional[PipelineImageInput] = None,
|
|
|
967 |
output_type: Optional[str] = "pil",
|
968 |
return_dict: bool = True,
|
969 |
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
@@ -978,7 +1038,9 @@ class StableDiffusionXLControlNetPipeline(
|
|
978 |
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
979 |
negative_target_size: Optional[Tuple[int, int]] = None,
|
980 |
clip_skip: Optional[int] = None,
|
981 |
-
callback_on_step_end: Optional[
|
|
|
|
|
982 |
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
983 |
**kwargs,
|
984 |
):
|
@@ -991,14 +1053,14 @@ class StableDiffusionXLControlNetPipeline(
|
|
991 |
prompt_2 (`str` or `List[str]`, *optional*):
|
992 |
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
993 |
used in both text-encoders.
|
994 |
-
image (`torch.
|
995 |
-
`List[List[torch.
|
996 |
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
997 |
-
specified as `torch.
|
998 |
-
|
999 |
-
|
1000 |
-
|
1001 |
-
|
1002 |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1003 |
The height in pixels of the generated image. Anything below 512 pixels won't work well for
|
1004 |
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
@@ -1010,6 +1072,21 @@ class StableDiffusionXLControlNetPipeline(
|
|
1010 |
num_inference_steps (`int`, *optional*, defaults to 50):
|
1011 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1012 |
expense of slower inference.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1013 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
1014 |
A higher guidance scale value encourages the model to generate images closely linked to the text
|
1015 |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
@@ -1027,24 +1104,29 @@ class StableDiffusionXLControlNetPipeline(
|
|
1027 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1028 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
1029 |
generation deterministic.
|
1030 |
-
latents (`torch.
|
1031 |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
1032 |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1033 |
tensor is generated by sampling using the supplied random `generator`.
|
1034 |
-
prompt_embeds (`torch.
|
1035 |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
1036 |
provided, text embeddings are generated from the `prompt` input argument.
|
1037 |
-
negative_prompt_embeds (`torch.
|
1038 |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
1039 |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
1040 |
-
pooled_prompt_embeds (`torch.
|
1041 |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
1042 |
not provided, pooled text embeddings are generated from `prompt` input argument.
|
1043 |
-
negative_pooled_prompt_embeds (`torch.
|
1044 |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
|
1045 |
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
|
1046 |
argument.
|
1047 |
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
|
|
|
|
|
|
|
|
|
|
1048 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
1049 |
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
1050 |
return_dict (`bool`, *optional*, defaults to `True`):
|
@@ -1096,15 +1178,15 @@ class StableDiffusionXLControlNetPipeline(
|
|
1096 |
clip_skip (`int`, *optional*):
|
1097 |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1098 |
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1099 |
-
callback_on_step_end (`Callable`, *optional*):
|
1100 |
-
A function
|
1101 |
-
with the following arguments: `callback_on_step_end(self:
|
1102 |
-
callback_kwargs: Dict)`. `callback_kwargs` will include a
|
1103 |
-
`callback_on_step_end_tensor_inputs`.
|
1104 |
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1105 |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1106 |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1107 |
-
`._callback_tensor_inputs` attribute of your
|
1108 |
|
1109 |
Examples:
|
1110 |
|
@@ -1130,6 +1212,9 @@ class StableDiffusionXLControlNetPipeline(
|
|
1130 |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1131 |
)
|
1132 |
|
|
|
|
|
|
|
1133 |
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
1134 |
|
1135 |
# align format for control guidance
|
@@ -1155,6 +1240,8 @@ class StableDiffusionXLControlNetPipeline(
|
|
1155 |
prompt_embeds,
|
1156 |
negative_prompt_embeds,
|
1157 |
pooled_prompt_embeds,
|
|
|
|
|
1158 |
negative_pooled_prompt_embeds,
|
1159 |
controlnet_conditioning_scale,
|
1160 |
control_guidance_start,
|
@@ -1165,6 +1252,8 @@ class StableDiffusionXLControlNetPipeline(
|
|
1165 |
self._guidance_scale = guidance_scale
|
1166 |
self._clip_skip = clip_skip
|
1167 |
self._cross_attention_kwargs = cross_attention_kwargs
|
|
|
|
|
1168 |
|
1169 |
# 2. Define call parameters
|
1170 |
if prompt is not None and isinstance(prompt, str):
|
@@ -1212,9 +1301,13 @@ class StableDiffusionXLControlNetPipeline(
|
|
1212 |
)
|
1213 |
|
1214 |
# 3.2 Encode ip_adapter_image
|
1215 |
-
if ip_adapter_image is not None:
|
1216 |
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1217 |
-
ip_adapter_image,
|
|
|
|
|
|
|
|
|
1218 |
)
|
1219 |
|
1220 |
# 4. Prepare image
|
@@ -1231,7 +1324,7 @@ class StableDiffusionXLControlNetPipeline(
|
|
1231 |
guess_mode=guess_mode,
|
1232 |
)
|
1233 |
height, width = image.shape[-2:]
|
1234 |
-
height, width = height*self.vae_scale_factor, width*self.vae_scale_factor # for vae controlnet
|
1235 |
elif isinstance(controlnet, MultiControlNetModel):
|
1236 |
images = []
|
1237 |
|
@@ -1256,8 +1349,9 @@ class StableDiffusionXLControlNetPipeline(
|
|
1256 |
assert False
|
1257 |
|
1258 |
# 5. Prepare timesteps
|
1259 |
-
|
1260 |
-
|
|
|
1261 |
self._num_timesteps = len(timesteps)
|
1262 |
|
1263 |
# 6. Prepare latent variables
|
@@ -1336,11 +1430,31 @@ class StableDiffusionXLControlNetPipeline(
|
|
1336 |
|
1337 |
# 8. Denoising loop
|
1338 |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1339 |
is_unet_compiled = is_compiled_module(self.unet)
|
1340 |
is_controlnet_compiled = is_compiled_module(self.controlnet)
|
1341 |
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
1342 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1343 |
for i, t in enumerate(timesteps):
|
|
|
|
|
|
|
1344 |
# Relevant thread:
|
1345 |
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
1346 |
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
|
@@ -1386,13 +1500,13 @@ class StableDiffusionXLControlNetPipeline(
|
|
1386 |
)
|
1387 |
|
1388 |
if guess_mode and self.do_classifier_free_guidance:
|
1389 |
-
#
|
1390 |
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1391 |
# add 0 to the unconditional batch to keep it unchanged.
|
1392 |
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1393 |
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1394 |
|
1395 |
-
if ip_adapter_image is not None:
|
1396 |
added_cond_kwargs["image_embeds"] = image_embeds
|
1397 |
|
1398 |
# predict the noise residual
|
@@ -1425,6 +1539,13 @@ class StableDiffusionXLControlNetPipeline(
|
|
1425 |
latents = callback_outputs.pop("latents", latents)
|
1426 |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1427 |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1428 |
|
1429 |
# call the callback, if provided
|
1430 |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
@@ -1441,7 +1562,22 @@ class StableDiffusionXLControlNetPipeline(
|
|
1441 |
self.upcast_vae()
|
1442 |
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1443 |
|
1444 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1445 |
|
1446 |
# cast back to fp16 if needed
|
1447 |
if needs_upcasting:
|
@@ -1462,4 +1598,4 @@ class StableDiffusionXLControlNetPipeline(
|
|
1462 |
if not return_dict:
|
1463 |
return (image,)
|
1464 |
|
1465 |
-
return StableDiffusionXLPipelineOutput(images=image)
|
|
|
37 |
StableDiffusionXLLoraLoaderMixin,
|
38 |
TextualInversionLoaderMixin,
|
39 |
)
|
|
|
40 |
from .controlnet import ControlNetModel
|
41 |
+
# from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
|
42 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
43 |
from diffusers.models.attention_processor import (
|
44 |
AttnProcessor2_0,
|
|
|
57 |
unscale_lora_layers,
|
58 |
)
|
59 |
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
|
60 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
61 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
62 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
63 |
|
64 |
if is_invisible_watermark_available():
|
65 |
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
|
|
116 |
"""
|
117 |
|
118 |
|
119 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
120 |
+
def retrieve_timesteps(
|
121 |
+
scheduler,
|
122 |
+
num_inference_steps: Optional[int] = None,
|
123 |
+
device: Optional[Union[str, torch.device]] = None,
|
124 |
+
timesteps: Optional[List[int]] = None,
|
125 |
+
sigmas: Optional[List[float]] = None,
|
126 |
+
**kwargs,
|
127 |
+
):
|
128 |
+
r"""
|
129 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
130 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
131 |
+
|
132 |
+
Args:
|
133 |
+
scheduler (`SchedulerMixin`):
|
134 |
+
The scheduler to get timesteps from.
|
135 |
+
num_inference_steps (`int`):
|
136 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
137 |
+
must be `None`.
|
138 |
+
device (`str` or `torch.device`, *optional*):
|
139 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
140 |
+
timesteps (`List[int]`, *optional*):
|
141 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
142 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
143 |
+
sigmas (`List[float]`, *optional*):
|
144 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
145 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
146 |
+
|
147 |
+
Returns:
|
148 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
149 |
+
second element is the number of inference steps.
|
150 |
+
"""
|
151 |
+
if timesteps is not None and sigmas is not None:
|
152 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
153 |
+
if timesteps is not None:
|
154 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
155 |
+
if not accepts_timesteps:
|
156 |
+
raise ValueError(
|
157 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
158 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
159 |
+
)
|
160 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
161 |
+
timesteps = scheduler.timesteps
|
162 |
+
num_inference_steps = len(timesteps)
|
163 |
+
elif sigmas is not None:
|
164 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
165 |
+
if not accept_sigmas:
|
166 |
+
raise ValueError(
|
167 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
168 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
169 |
+
)
|
170 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
171 |
+
timesteps = scheduler.timesteps
|
172 |
+
num_inference_steps = len(timesteps)
|
173 |
+
else:
|
174 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
175 |
+
timesteps = scheduler.timesteps
|
176 |
+
return timesteps, num_inference_steps
|
177 |
+
|
178 |
+
|
179 |
class StableDiffusionXLControlNetPipeline(
|
180 |
DiffusionPipeline,
|
181 |
+
StableDiffusionMixin,
|
182 |
TextualInversionLoaderMixin,
|
183 |
StableDiffusionXLLoraLoaderMixin,
|
184 |
IPAdapterMixin,
|
|
|
237 |
"feature_extractor",
|
238 |
"image_encoder",
|
239 |
]
|
240 |
+
_callback_tensor_inputs = [
|
241 |
+
"latents",
|
242 |
+
"prompt_embeds",
|
243 |
+
"negative_prompt_embeds",
|
244 |
+
"add_text_embeds",
|
245 |
+
"add_time_ids",
|
246 |
+
"negative_pooled_prompt_embeds",
|
247 |
+
"negative_add_time_ids",
|
248 |
+
"image",
|
249 |
+
]
|
250 |
|
251 |
def __init__(
|
252 |
self,
|
|
|
294 |
|
295 |
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
296 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
298 |
def encode_prompt(
|
299 |
self,
|
|
|
304 |
do_classifier_free_guidance: bool = True,
|
305 |
negative_prompt: Optional[str] = None,
|
306 |
negative_prompt_2: Optional[str] = None,
|
307 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
308 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
309 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
310 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
311 |
lora_scale: Optional[float] = None,
|
312 |
clip_skip: Optional[int] = None,
|
313 |
):
|
|
|
333 |
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
334 |
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
335 |
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
336 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
337 |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
338 |
provided, text embeddings will be generated from `prompt` input argument.
|
339 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
340 |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
341 |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
342 |
argument.
|
343 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
344 |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
345 |
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
346 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
347 |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
348 |
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
349 |
input argument.
|
|
|
390 |
prompt_2 = prompt_2 or prompt
|
391 |
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
392 |
|
393 |
+
# textual inversion: process multi-vector tokens if necessary
|
394 |
prompt_embeds_list = []
|
395 |
prompts = [prompt, prompt_2]
|
396 |
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
|
|
555 |
return image_embeds, uncond_image_embeds
|
556 |
|
557 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
558 |
+
def prepare_ip_adapter_image_embeds(
|
559 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
560 |
+
):
|
561 |
+
image_embeds = []
|
562 |
+
if do_classifier_free_guidance:
|
563 |
+
negative_image_embeds = []
|
564 |
+
if ip_adapter_image_embeds is None:
|
565 |
+
if not isinstance(ip_adapter_image, list):
|
566 |
+
ip_adapter_image = [ip_adapter_image]
|
567 |
|
568 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
569 |
+
raise ValueError(
|
570 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
571 |
+
)
|
572 |
|
573 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
574 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
575 |
+
):
|
576 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
577 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
578 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
579 |
+
)
|
|
|
|
|
|
|
580 |
|
581 |
+
image_embeds.append(single_image_embeds[None, :])
|
582 |
+
if do_classifier_free_guidance:
|
583 |
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
584 |
+
else:
|
585 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
586 |
+
if do_classifier_free_guidance:
|
587 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
588 |
+
negative_image_embeds.append(single_negative_image_embeds)
|
589 |
+
image_embeds.append(single_image_embeds)
|
590 |
+
|
591 |
+
ip_adapter_image_embeds = []
|
592 |
+
for i, single_image_embeds in enumerate(image_embeds):
|
593 |
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
594 |
+
if do_classifier_free_guidance:
|
595 |
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
596 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
597 |
|
598 |
+
single_image_embeds = single_image_embeds.to(device=device)
|
599 |
+
ip_adapter_image_embeds.append(single_image_embeds)
|
600 |
|
601 |
+
return ip_adapter_image_embeds
|
602 |
|
603 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
604 |
def prepare_extra_step_kwargs(self, generator, eta):
|
|
|
629 |
prompt_embeds=None,
|
630 |
negative_prompt_embeds=None,
|
631 |
pooled_prompt_embeds=None,
|
632 |
+
ip_adapter_image=None,
|
633 |
+
ip_adapter_image_embeds=None,
|
634 |
negative_pooled_prompt_embeds=None,
|
635 |
controlnet_conditioning_scale=1.0,
|
636 |
control_guidance_start=0.0,
|
|
|
792 |
if end > 1.0:
|
793 |
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
794 |
|
795 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
796 |
+
raise ValueError(
|
797 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
798 |
+
)
|
799 |
+
|
800 |
+
if ip_adapter_image_embeds is not None:
|
801 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
802 |
+
raise ValueError(
|
803 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
804 |
+
)
|
805 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
806 |
+
raise ValueError(
|
807 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
808 |
+
)
|
809 |
+
|
810 |
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
|
811 |
def check_image(self, image, prompt, prompt_embeds):
|
812 |
image_is_pil = isinstance(image, PIL.Image.Image)
|
|
|
878 |
|
879 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
880 |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
881 |
+
shape = (
|
882 |
+
batch_size,
|
883 |
+
num_channels_latents,
|
884 |
+
int(height) // self.vae_scale_factor,
|
885 |
+
int(width) // self.vae_scale_factor,
|
886 |
+
)
|
887 |
if isinstance(generator, list) and len(generator) != batch_size:
|
888 |
raise ValueError(
|
889 |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
|
927 |
(
|
928 |
AttnProcessor2_0,
|
929 |
XFormersAttnProcessor,
|
|
|
|
|
930 |
),
|
931 |
)
|
932 |
# if xformers or torch_2_0 is used attention block does not need
|
|
|
936 |
self.vae.decoder.conv_in.to(dtype)
|
937 |
self.vae.decoder.mid_block.to(dtype)
|
938 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
939 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
940 |
+
def get_guidance_scale_embedding(
|
941 |
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
942 |
+
) -> torch.Tensor:
|
943 |
"""
|
944 |
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
945 |
|
946 |
Args:
|
947 |
+
w (`torch.Tensor`):
|
948 |
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
949 |
embedding_dim (`int`, *optional*, defaults to 512):
|
950 |
+
Dimension of the embeddings to generate.
|
951 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
952 |
+
Data type of the generated embeddings.
|
953 |
|
954 |
Returns:
|
955 |
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
956 |
"""
|
957 |
assert len(w.shape) == 1
|
958 |
w = w * 1000.0
|
|
|
986 |
def cross_attention_kwargs(self):
|
987 |
return self._cross_attention_kwargs
|
988 |
|
989 |
+
@property
|
990 |
+
def denoising_end(self):
|
991 |
+
return self._denoising_end
|
992 |
+
|
993 |
@property
|
994 |
def num_timesteps(self):
|
995 |
return self._num_timesteps
|
996 |
|
997 |
+
@property
|
998 |
+
def interrupt(self):
|
999 |
+
return self._interrupt
|
1000 |
+
|
1001 |
@torch.no_grad()
|
1002 |
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
1003 |
def __call__(
|
|
|
1008 |
height: Optional[int] = None,
|
1009 |
width: Optional[int] = None,
|
1010 |
num_inference_steps: int = 50,
|
1011 |
+
timesteps: List[int] = None,
|
1012 |
+
sigmas: List[float] = None,
|
1013 |
+
denoising_end: Optional[float] = None,
|
1014 |
guidance_scale: float = 5.0,
|
1015 |
negative_prompt: Optional[Union[str, List[str]]] = None,
|
1016 |
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
1017 |
num_images_per_prompt: Optional[int] = 1,
|
1018 |
eta: float = 0.0,
|
1019 |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1020 |
+
latents: Optional[torch.Tensor] = None,
|
1021 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
1022 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
1023 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
1024 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
1025 |
ip_adapter_image: Optional[PipelineImageInput] = None,
|
1026 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
1027 |
output_type: Optional[str] = "pil",
|
1028 |
return_dict: bool = True,
|
1029 |
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
1038 |
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
1039 |
negative_target_size: Optional[Tuple[int, int]] = None,
|
1040 |
clip_skip: Optional[int] = None,
|
1041 |
+
callback_on_step_end: Optional[
|
1042 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
1043 |
+
] = None,
|
1044 |
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1045 |
**kwargs,
|
1046 |
):
|
|
|
1053 |
prompt_2 (`str` or `List[str]`, *optional*):
|
1054 |
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
1055 |
used in both text-encoders.
|
1056 |
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
1057 |
+
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
1058 |
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
1059 |
+
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
|
1060 |
+
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
|
1061 |
+
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
|
1062 |
+
images must be passed as a list such that each element of the list can be correctly batched for input
|
1063 |
+
to a single ControlNet.
|
1064 |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1065 |
The height in pixels of the generated image. Anything below 512 pixels won't work well for
|
1066 |
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
|
|
1072 |
num_inference_steps (`int`, *optional*, defaults to 50):
|
1073 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1074 |
expense of slower inference.
|
1075 |
+
timesteps (`List[int]`, *optional*):
|
1076 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
1077 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
1078 |
+
passed will be used. Must be in descending order.
|
1079 |
+
sigmas (`List[float]`, *optional*):
|
1080 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
1081 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
1082 |
+
will be used.
|
1083 |
+
denoising_end (`float`, *optional*):
|
1084 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
1085 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
1086 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
1087 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
1088 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
1089 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
1090 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
1091 |
A higher guidance scale value encourages the model to generate images closely linked to the text
|
1092 |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
|
|
1104 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1105 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
1106 |
generation deterministic.
|
1107 |
+
latents (`torch.Tensor`, *optional*):
|
1108 |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
1109 |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1110 |
tensor is generated by sampling using the supplied random `generator`.
|
1111 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
1112 |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
1113 |
provided, text embeddings are generated from the `prompt` input argument.
|
1114 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
1115 |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
1116 |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
1117 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
1118 |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
1119 |
not provided, pooled text embeddings are generated from `prompt` input argument.
|
1120 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
1121 |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
|
1122 |
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
|
1123 |
argument.
|
1124 |
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1125 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
1126 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
1127 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
1128 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
1129 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
1130 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
1131 |
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
1132 |
return_dict (`bool`, *optional*, defaults to `True`):
|
|
|
1178 |
clip_skip (`int`, *optional*):
|
1179 |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1180 |
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1181 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
1182 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
1183 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
1184 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
1185 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
1186 |
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1187 |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1188 |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1189 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
1190 |
|
1191 |
Examples:
|
1192 |
|
|
|
1212 |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1213 |
)
|
1214 |
|
1215 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
1216 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
1217 |
+
|
1218 |
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
1219 |
|
1220 |
# align format for control guidance
|
|
|
1240 |
prompt_embeds,
|
1241 |
negative_prompt_embeds,
|
1242 |
pooled_prompt_embeds,
|
1243 |
+
ip_adapter_image,
|
1244 |
+
ip_adapter_image_embeds,
|
1245 |
negative_pooled_prompt_embeds,
|
1246 |
controlnet_conditioning_scale,
|
1247 |
control_guidance_start,
|
|
|
1252 |
self._guidance_scale = guidance_scale
|
1253 |
self._clip_skip = clip_skip
|
1254 |
self._cross_attention_kwargs = cross_attention_kwargs
|
1255 |
+
self._denoising_end = denoising_end
|
1256 |
+
self._interrupt = False
|
1257 |
|
1258 |
# 2. Define call parameters
|
1259 |
if prompt is not None and isinstance(prompt, str):
|
|
|
1301 |
)
|
1302 |
|
1303 |
# 3.2 Encode ip_adapter_image
|
1304 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1305 |
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1306 |
+
ip_adapter_image,
|
1307 |
+
ip_adapter_image_embeds,
|
1308 |
+
device,
|
1309 |
+
batch_size * num_images_per_prompt,
|
1310 |
+
self.do_classifier_free_guidance,
|
1311 |
)
|
1312 |
|
1313 |
# 4. Prepare image
|
|
|
1324 |
guess_mode=guess_mode,
|
1325 |
)
|
1326 |
height, width = image.shape[-2:]
|
1327 |
+
height, width = height*self.vae_scale_factor, width*self.vae_scale_factor # Bria: update for vae controlnet
|
1328 |
elif isinstance(controlnet, MultiControlNetModel):
|
1329 |
images = []
|
1330 |
|
|
|
1349 |
assert False
|
1350 |
|
1351 |
# 5. Prepare timesteps
|
1352 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1353 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
1354 |
+
)
|
1355 |
self._num_timesteps = len(timesteps)
|
1356 |
|
1357 |
# 6. Prepare latent variables
|
|
|
1430 |
|
1431 |
# 8. Denoising loop
|
1432 |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1433 |
+
|
1434 |
+
# 8.1 Apply denoising_end
|
1435 |
+
if (
|
1436 |
+
self.denoising_end is not None
|
1437 |
+
and isinstance(self.denoising_end, float)
|
1438 |
+
and self.denoising_end > 0
|
1439 |
+
and self.denoising_end < 1
|
1440 |
+
):
|
1441 |
+
discrete_timestep_cutoff = int(
|
1442 |
+
round(
|
1443 |
+
self.scheduler.config.num_train_timesteps
|
1444 |
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
1445 |
+
)
|
1446 |
+
)
|
1447 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
1448 |
+
timesteps = timesteps[:num_inference_steps]
|
1449 |
+
|
1450 |
is_unet_compiled = is_compiled_module(self.unet)
|
1451 |
is_controlnet_compiled = is_compiled_module(self.controlnet)
|
1452 |
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
1453 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1454 |
for i, t in enumerate(timesteps):
|
1455 |
+
if self.interrupt:
|
1456 |
+
continue
|
1457 |
+
|
1458 |
# Relevant thread:
|
1459 |
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
1460 |
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
|
|
|
1500 |
)
|
1501 |
|
1502 |
if guess_mode and self.do_classifier_free_guidance:
|
1503 |
+
# Inferred ControlNet only for the conditional batch.
|
1504 |
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1505 |
# add 0 to the unconditional batch to keep it unchanged.
|
1506 |
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1507 |
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1508 |
|
1509 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1510 |
added_cond_kwargs["image_embeds"] = image_embeds
|
1511 |
|
1512 |
# predict the noise residual
|
|
|
1539 |
latents = callback_outputs.pop("latents", latents)
|
1540 |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1541 |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1542 |
+
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
1543 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
1544 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
1545 |
+
)
|
1546 |
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
1547 |
+
negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
|
1548 |
+
image = callback_outputs.pop("image", image)
|
1549 |
|
1550 |
# call the callback, if provided
|
1551 |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
|
1562 |
self.upcast_vae()
|
1563 |
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1564 |
|
1565 |
+
# unscale/denormalize the latents
|
1566 |
+
# denormalize with the mean and std if available and not None
|
1567 |
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
1568 |
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
1569 |
+
if has_latents_mean and has_latents_std:
|
1570 |
+
latents_mean = (
|
1571 |
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1572 |
+
)
|
1573 |
+
latents_std = (
|
1574 |
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1575 |
+
)
|
1576 |
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
1577 |
+
else:
|
1578 |
+
latents = latents / self.vae.config.scaling_factor
|
1579 |
+
|
1580 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1581 |
|
1582 |
# cast back to fp16 if needed
|
1583 |
if needs_upcasting:
|
|
|
1598 |
if not return_dict:
|
1599 |
return (image,)
|
1600 |
|
1601 |
+
return StableDiffusionXLPipelineOutput(images=image)
|