Spaces:
Running
Running
Joschka Strueber
[Add] add bbh and gpqa benchmarks again with correct answer_index selection
0a42e99
import gradio as gr | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from io import BytesIO | |
from PIL import Image | |
from datasets.exceptions import DatasetNotFoundError | |
from src.dataloading import get_leaderboard_datasets | |
from src.similarity import load_data_and_compute_similarities | |
# Set matplotlib backend for non-GUI environments | |
plt.switch_backend('Agg') | |
def create_heatmap(selected_models, selected_dataset, selected_metric): | |
if not selected_models or not selected_dataset: | |
return None | |
# Sort models and get short names | |
similarities = load_data_and_compute_similarities(selected_models, selected_dataset, selected_metric) | |
# Check if similarity matrix contains NaN rows | |
failed_models = [] | |
for i in range(len(similarities)): | |
if np.isnan(similarities[i]).all(): | |
failed_models.append(selected_models[i]) | |
if failed_models: | |
gr.Warning(f"Failed to load data for models: {', '.join(failed_models)}") | |
# Create figure and heatmap using seaborn | |
plt.figure(figsize=(8, 6)) | |
ax = sns.heatmap( | |
similarities, | |
annot=True, | |
fmt=".2f", | |
cmap="viridis", | |
vmin=0, | |
vmax=1, | |
xticklabels=selected_models, | |
yticklabels=selected_models | |
) | |
# Customize plot | |
plt.title(f"{selected_metric} for {selected_dataset}", fontsize=16) | |
plt.xlabel("Models", fontsize=14) | |
plt.ylabel("Models", fontsize=14) | |
plt.xticks(rotation=45, ha='right') | |
plt.yticks(rotation=0) | |
plt.tight_layout() | |
# Save to buffer | |
buf = BytesIO() | |
plt.savefig(buf, format="png", dpi=100, bbox_inches="tight") | |
plt.close() | |
# Convert to PIL Image | |
buf.seek(0) | |
img = Image.open(buf).convert("RGB") | |
return img | |
def validate_inputs(selected_models, selected_dataset): | |
if not selected_models: | |
raise gr.Error("Please select at least one model!") | |
if not selected_dataset: | |
raise gr.Error("Please select a dataset!") | |
def update_datasets_based_on_models(selected_models, current_dataset): | |
try: | |
available_datasets = get_leaderboard_datasets(selected_models) if selected_models else [] | |
if current_dataset in available_datasets: | |
valid_dataset = current_dataset | |
elif "mmlu_pro" in available_datasets: | |
valid_dataset = "mmlu_pro" | |
else: | |
valid_dataset = None | |
return gr.update( | |
choices=available_datasets, | |
value=valid_dataset | |
) | |
except DatasetNotFoundError as e: | |
# Extract model name from error message | |
model_name = e.args[0].split("'")[1] | |
model_name = model_name.split("/")[-1].replace("__", "/").replace("_details", "") | |
# Display a shorter warning | |
gr.Warning(f"Data for '{model_name}' is gated or unavailable.") | |
return gr.update(choices=[], value=None) | |
custom_css = """ | |
.image-container img { | |
width: 80% !important; /* Make it 80% of the parent container */ | |
height: auto !important; /* Maintain aspect ratio */ | |
max-width: 800px; /* Optional: Set a max limit */ | |
display: block; | |
margin: auto; /* Center the image */ | |
} | |
""" |