Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
classifier = pipeline(
|
5 |
+
"zero-shot-image-classification",
|
6 |
+
model="google/siglip2-base-patch16-224",
|
7 |
+
device=-1
|
8 |
+
)
|
9 |
+
|
10 |
+
def classify_image(image, candidate_labels):
|
11 |
+
"""
|
12 |
+
Takes an image and a comma-separated string of candidate labels,
|
13 |
+
and returns the classification scores.
|
14 |
+
"""
|
15 |
+
labels = [label.strip() for label in candidate_labels.split(",") if label.strip()]
|
16 |
+
|
17 |
+
results = classifier(image, candidate_labels=labels)
|
18 |
+
return results[0]
|
19 |
+
|
20 |
+
iface = gr.Interface(
|
21 |
+
fn=classify_image,
|
22 |
+
inputs=[
|
23 |
+
gr.Image(type="pil", label="Input Image"),
|
24 |
+
gr.Textbox(value="cat, dog, bird, car, airplane", label="Candidate Labels (comma separated)")
|
25 |
+
],
|
26 |
+
outputs=gr.JSON(label="Classification Results"),
|
27 |
+
title="SigLIP Zero-Shot Image Classifier",
|
28 |
+
description="This app uses the Google SigLIP model (siglip2-base-patch16-224) for zero-shot image classification on CPU. "
|
29 |
+
"Enter an image and a set of candidate labels to see the prediction scores."
|
30 |
+
)
|
31 |
+
|
32 |
+
if __name__ == "__main__":
|
33 |
+
iface.launch()
|