Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import nltk
|
3 |
+
from qanom.qanom_end_to_end_pipeline import QANomEndToEndPipeline
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
models = ["kleinay/qanom-seq2seq-model-baseline",
|
7 |
+
"kleinay/qanom-seq2seq-model-joint"]
|
8 |
+
pipelines = {model: QANomEndToEndPipeline(model) for model in models}
|
9 |
+
|
10 |
+
|
11 |
+
description = f"""This is a demo of the full QANom Pipeline - identifying deverbal nominalizations and parsing them with question-answer driven semantic role labeling (QASRL) """
|
12 |
+
title="QANom End-to-End Pipeline Demo"
|
13 |
+
examples = [[models[1], "the construction of the officer 's building finished right after the beginning of the destruction of the previous construction .", 0.7],
|
14 |
+
[models[1], "The doctor asked about the progress in Luke 's treatment .", 0.75],
|
15 |
+
[models[0], "The Veterinary student was interested in Luke 's treatment of sea animals .", 0.75],
|
16 |
+
[models[1], "Some reviewers agreed that the criticism raised by the AC is mostly justified .", 0.5]]
|
17 |
+
|
18 |
+
|
19 |
+
input_sent_box_label = "Insert sentence here, or select from the examples below"
|
20 |
+
links = """<p style='text-align: center'>
|
21 |
+
<a href='https://www.qasrl.org' target='_blank'>QASRL Website</a> | <a href='https://huggingface.co/kleinay/qanom-seq2seq-model-baseline' target='_blank'>Model Repo at Huggingface Hub</a>
|
22 |
+
</p>"""
|
23 |
+
|
24 |
+
|
25 |
+
def call(model_name, sentence, detection_threshold):
|
26 |
+
|
27 |
+
pipeline = pipelines[model_name]
|
28 |
+
pred_infos = pipeline([sentence], detection_threshold=detection_threshold)[0]
|
29 |
+
def pretty_qas(pred_info) -> List[str]:
|
30 |
+
if not pred_info or not pred_info['QAs']: return []
|
31 |
+
return [f"{qa['question']} --- {';'.join(qa['answers'])}"
|
32 |
+
for qa in pred_info['QAs'] if qa is not None]
|
33 |
+
all_qas = [qa for pred_info in pred_infos for qa in pretty_qas(pred_info)]
|
34 |
+
if not pred_infos:
|
35 |
+
pretty_qa_output = "NO NOMINALIZATION FOUND"
|
36 |
+
elif not all_qas:
|
37 |
+
pretty_qa_output = "NO QA GENERATED"
|
38 |
+
else:
|
39 |
+
pretty_qa_output = "\n".join(all_qas)
|
40 |
+
# also present highlighted predicates
|
41 |
+
positives = [pred_info['predicate_idx'] for pred_info in pred_infos]
|
42 |
+
def color(idx):
|
43 |
+
if idx in positives: return "lightgreen"
|
44 |
+
idx2verb = {d["predicate_idx"] : d["verb_form"] for d in pred_infos}
|
45 |
+
idx2prob = {d["predicate_idx"] : d["predicate_detector_probability"] for d in pred_infos}
|
46 |
+
def word_span(word, idx):
|
47 |
+
tooltip = f'title=" probability={idx2prob[idx]:.2}
verb={idx2verb[idx]}"' if idx in idx2verb else ''
|
48 |
+
return f'<span {tooltip} style="background-color: {color(idx)}">{word}</span>'
|
49 |
+
html = '<span>' + ' '.join(word_span(word, idx) for idx, word in enumerate(sentence.split(" "))) + '</span>'
|
50 |
+
return html, pretty_qa_output , pred_infos
|
51 |
+
|
52 |
+
iface = gr.Interface(fn=call,
|
53 |
+
inputs=[gr.inputs.Radio(choices=models, default=models[0], label="Model"),
|
54 |
+
gr.inputs.Textbox(placeholder=input_sent_box_label, label="Sentence", lines=4),
|
55 |
+
gr.inputs.Slider(minimum=0., maximum=1., step=0.01, default=0.5, label="Nominalization Detection Threshold")],
|
56 |
+
outputs=[gr.outputs.HTML(label="Detected Nominalizations"),
|
57 |
+
gr.outputs.Textbox(label="Generated QAs"),
|
58 |
+
gr.outputs.JSON(label="Raw Model Output")],
|
59 |
+
title=title,
|
60 |
+
description=description,
|
61 |
+
article=links,
|
62 |
+
examples=examples)
|
63 |
+
iface.launch()
|