Spaces:
Runtime error
Runtime error
Create HebEMO.py
Browse files
HebEMO.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class HebEMO:
|
2 |
+
def __init__(self, device=0, emotions = ['expectation', 'happy', 'trust', 'fear', 'surprise', 'anger',
|
3 |
+
'sadness', 'disgust']):
|
4 |
+
|
5 |
+
from transformers import pipeline
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
self.device = device
|
9 |
+
self.emotions = emotions
|
10 |
+
self.hebemo_models = {}
|
11 |
+
|
12 |
+
for emo in tqdm(emotions):
|
13 |
+
self.hebemo_models[emo] = pipeline(
|
14 |
+
"sentiment-analysis",
|
15 |
+
model="../hebEMO/"+emo+'_classifier',
|
16 |
+
tokenizer="../heBERT_base_oscar",
|
17 |
+
device = self.device #run on GPU
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
def hebemo(self, text = None, input_path=False, save_results=False, read_lines=False, plot=False):
|
22 |
+
'''
|
23 |
+
text (str): a text or list of text to analyze
|
24 |
+
input_path(str): the path to the text file (txt file, each row for different instance)
|
25 |
+
returns pandas DataFrame of the analyzed texts and save it to the same dir of the input file
|
26 |
+
'''
|
27 |
+
from pyplutchik import plutchik
|
28 |
+
import matplotlib.pyplot as plt
|
29 |
+
import pandas as pd
|
30 |
+
import time
|
31 |
+
import torch
|
32 |
+
from tqdm import tqdm
|
33 |
+
|
34 |
+
|
35 |
+
if text is None and type(input_path) is str:
|
36 |
+
# read the file
|
37 |
+
with open(input_path, encoding='utf8') as p:
|
38 |
+
txt = p.readlines()
|
39 |
+
|
40 |
+
elif text is not None and (input_path is None or input_path is False):
|
41 |
+
if type(text) is str:
|
42 |
+
if read_lines:
|
43 |
+
txt = text.split('\n')
|
44 |
+
else:
|
45 |
+
txt = [text]
|
46 |
+
elif type(text) is list:
|
47 |
+
txt = text
|
48 |
+
else:
|
49 |
+
raise ValueError('text should be text or list of text.')
|
50 |
+
else:
|
51 |
+
raise ValueError('you should provide a text string, list of strings or text path.')
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
# run hebEMO
|
57 |
+
hebEMO_df = pd.DataFrame(txt)
|
58 |
+
for emo in tqdm(self.emotions):
|
59 |
+
x = self.hebemo_models[emo](txt)
|
60 |
+
hebEMO_df = hebEMO_df.join(pd.DataFrame(x).rename(columns = {'label': emo, 'score':'confidence_'+emo}))
|
61 |
+
del x
|
62 |
+
torch.cuda.empty_cache()
|
63 |
+
hebEMO_df = hebEMO_df.applymap(lambda x: 0 if x=='LABEL_0' else 1 if x=='LABEL_1' else x)
|
64 |
+
|
65 |
+
if save_results is not False:
|
66 |
+
gen_name = str(int(time.time()*1e7))
|
67 |
+
if type(save_results) is str:
|
68 |
+
hebEMO_df.to_csv(save_results+'/'+gen_name+'_heEMOed.csv', encoding='utf8')
|
69 |
+
else:
|
70 |
+
hebEMO_df.to_csv(gen_name+'_heEMOed.csv', encoding='utf8')
|
71 |
+
|
72 |
+
if plot:
|
73 |
+
hebEMO = pd.DataFrame()
|
74 |
+
for emo in hebEMO_df.columns[1::2]:
|
75 |
+
hebEMO[emo] = abs(hebEMO_df[emo]-(1-hebEMO_df['confidence_'+emo]))
|
76 |
+
hebEMO = hebEMO.rename(columns= {'happy': 'joy', 'expectation':'anticipation'})
|
77 |
+
|
78 |
+
for i in range(0,1):
|
79 |
+
ax = plutchik(hebEMO.to_dict(orient='records')[i])
|
80 |
+
print(hebEMO_df[0][i])
|
81 |
+
plt.show()
|
82 |
+
return (plt.figure())
|
83 |
+
else:
|
84 |
+
return (hebEMO_df)
|
85 |
+
HebEMO_model = HebEMO()
|