File size: 1,041 Bytes
53f1934
9073835
 
 
00e4af7
 
53f1934
 
e551ca5
 
 
 
53f1934
9073835
 
771e9d0
0ef2ca5
53f1934
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
from HebEMO import HebEMO
from transformers import pipeline
import streamlit as st

with st.spinner('Loading models...'):
  HebEMO_model = HebEMO()


x = st.slider("Select a value")
st.write(x, "squared is", x * x)

#@st.cache

st.title("Find sentiment")
st.write("HebEMO is a tool to detect polarity and extract emotions from Hebrew user-generated content (UGC), which was trained on a unique Covid-19 related dataset that we collected and annotated. HebEMO yielded a high performance of weighted average F1-score = 0.96 for polarity classification. Emotion detection reached an F1-score of 0.78-0.97, with the exception of *surprise*, which the model failed to capture (F1 = 0.41). These results are better than the best-reported performance, even when compared to the English language.")
sent = st.text_area("Text", "write here", height = 20)
# interact(HebEMO_model.hebemo, text='ื”ื—ื™ื™ื ื™ืคื™ื ื•ืžืื•ืฉืจื™', plot=fixed(True), input_path=fixed(False), save_results=fixed(False),)
st.write (HebEMO_model.hebemo(sent, plot=True))